ImageFeature0D.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-jsk-ros-pkg/doc_stacks/2013-03-23_12-16-27.483192/jsk-ros-pkg/jsk_common/posedetection_msgs/msg/ImageFeature0D.msg */
00002 #ifndef POSEDETECTION_MSGS_MESSAGE_IMAGEFEATURE0D_H
00003 #define POSEDETECTION_MSGS_MESSAGE_IMAGEFEATURE0D_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "sensor_msgs/Image.h"
00018 #include "sensor_msgs/CameraInfo.h"
00019 #include "posedetection_msgs/Feature0D.h"
00020 
00021 namespace posedetection_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ImageFeature0D_ {
00025   typedef ImageFeature0D_<ContainerAllocator> Type;
00026 
00027   ImageFeature0D_()
00028   : image()
00029   , info()
00030   , features()
00031   {
00032   }
00033 
00034   ImageFeature0D_(const ContainerAllocator& _alloc)
00035   : image(_alloc)
00036   , info(_alloc)
00037   , features(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::sensor_msgs::Image_<ContainerAllocator>  _image_type;
00042    ::sensor_msgs::Image_<ContainerAllocator>  image;
00043 
00044   typedef  ::sensor_msgs::CameraInfo_<ContainerAllocator>  _info_type;
00045    ::sensor_msgs::CameraInfo_<ContainerAllocator>  info;
00046 
00047   typedef  ::posedetection_msgs::Feature0D_<ContainerAllocator>  _features_type;
00048    ::posedetection_msgs::Feature0D_<ContainerAllocator>  features;
00049 
00050 
00051   typedef boost::shared_ptr< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct ImageFeature0D
00055 typedef  ::posedetection_msgs::ImageFeature0D_<std::allocator<void> > ImageFeature0D;
00056 
00057 typedef boost::shared_ptr< ::posedetection_msgs::ImageFeature0D> ImageFeature0DPtr;
00058 typedef boost::shared_ptr< ::posedetection_msgs::ImageFeature0D const> ImageFeature0DConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace posedetection_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "a16c5327c89b15820420449cf843ed75";
00080   }
00081 
00082   static const char* value(const  ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0xa16c5327c89b1582ULL;
00084   static const uint64_t static_value2 = 0x0420449cf843ed75ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "posedetection_msgs/ImageFeature0D";
00092   }
00093 
00094   static const char* value(const  ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# synchronized image and features message\n\
00102 sensor_msgs/Image image\n\
00103 sensor_msgs/CameraInfo info\n\
00104 posedetection_msgs/Feature0D features\n\
00105 \n\
00106 ================================================================================\n\
00107 MSG: sensor_msgs/Image\n\
00108 # This message contains an uncompressed image\n\
00109 # (0, 0) is at top-left corner of image\n\
00110 #\n\
00111 \n\
00112 Header header        # Header timestamp should be acquisition time of image\n\
00113                      # Header frame_id should be optical frame of camera\n\
00114                      # origin of frame should be optical center of cameara\n\
00115                      # +x should point to the right in the image\n\
00116                      # +y should point down in the image\n\
00117                      # +z should point into to plane of the image\n\
00118                      # If the frame_id here and the frame_id of the CameraInfo\n\
00119                      # message associated with the image conflict\n\
00120                      # the behavior is undefined\n\
00121 \n\
00122 uint32 height         # image height, that is, number of rows\n\
00123 uint32 width          # image width, that is, number of columns\n\
00124 \n\
00125 # The legal values for encoding are in file src/image_encodings.cpp\n\
00126 # If you want to standardize a new string format, join\n\
00127 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00128 \n\
00129 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00130                       # taken from the list of strings in src/image_encodings.cpp\n\
00131 \n\
00132 uint8 is_bigendian    # is this data bigendian?\n\
00133 uint32 step           # Full row length in bytes\n\
00134 uint8[] data          # actual matrix data, size is (step * rows)\n\
00135 \n\
00136 ================================================================================\n\
00137 MSG: std_msgs/Header\n\
00138 # Standard metadata for higher-level stamped data types.\n\
00139 # This is generally used to communicate timestamped data \n\
00140 # in a particular coordinate frame.\n\
00141 # \n\
00142 # sequence ID: consecutively increasing ID \n\
00143 uint32 seq\n\
00144 #Two-integer timestamp that is expressed as:\n\
00145 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00146 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00147 # time-handling sugar is provided by the client library\n\
00148 time stamp\n\
00149 #Frame this data is associated with\n\
00150 # 0: no frame\n\
00151 # 1: global frame\n\
00152 string frame_id\n\
00153 \n\
00154 ================================================================================\n\
00155 MSG: sensor_msgs/CameraInfo\n\
00156 # This message defines meta information for a camera. It should be in a\n\
00157 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00158 # image topics named:\n\
00159 #\n\
00160 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00161 #   image            - monochrome, distorted\n\
00162 #   image_color      - color, distorted\n\
00163 #   image_rect       - monochrome, rectified\n\
00164 #   image_rect_color - color, rectified\n\
00165 #\n\
00166 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00167 # for producing the four processed image topics from image_raw and\n\
00168 # camera_info. The meaning of the camera parameters are described in\n\
00169 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00170 #\n\
00171 # The image_geometry package provides a user-friendly interface to\n\
00172 # common operations using this meta information. If you want to, e.g.,\n\
00173 # project a 3d point into image coordinates, we strongly recommend\n\
00174 # using image_geometry.\n\
00175 #\n\
00176 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00177 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00178 # indicates an uncalibrated camera.\n\
00179 \n\
00180 #######################################################################\n\
00181 #                     Image acquisition info                          #\n\
00182 #######################################################################\n\
00183 \n\
00184 # Time of image acquisition, camera coordinate frame ID\n\
00185 Header header    # Header timestamp should be acquisition time of image\n\
00186                  # Header frame_id should be optical frame of camera\n\
00187                  # origin of frame should be optical center of camera\n\
00188                  # +x should point to the right in the image\n\
00189                  # +y should point down in the image\n\
00190                  # +z should point into the plane of the image\n\
00191 \n\
00192 \n\
00193 #######################################################################\n\
00194 #                      Calibration Parameters                         #\n\
00195 #######################################################################\n\
00196 # These are fixed during camera calibration. Their values will be the #\n\
00197 # same in all messages until the camera is recalibrated. Note that    #\n\
00198 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00199 #                                                                     #\n\
00200 # The internal parameters can be used to warp a raw (distorted) image #\n\
00201 # to:                                                                 #\n\
00202 #   1. An undistorted image (requires D and K)                        #\n\
00203 #   2. A rectified image (requires D, K, R)                           #\n\
00204 # The projection matrix P projects 3D points into the rectified image.#\n\
00205 #######################################################################\n\
00206 \n\
00207 # The image dimensions with which the camera was calibrated. Normally\n\
00208 # this will be the full camera resolution in pixels.\n\
00209 uint32 height\n\
00210 uint32 width\n\
00211 \n\
00212 # The distortion model used. Supported models are listed in\n\
00213 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00214 # simple model of radial and tangential distortion - is sufficent.\n\
00215 string distortion_model\n\
00216 \n\
00217 # The distortion parameters, size depending on the distortion model.\n\
00218 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00219 float64[] D\n\
00220 \n\
00221 # Intrinsic camera matrix for the raw (distorted) images.\n\
00222 #     [fx  0 cx]\n\
00223 # K = [ 0 fy cy]\n\
00224 #     [ 0  0  1]\n\
00225 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00226 # coordinates using the focal lengths (fx, fy) and principal point\n\
00227 # (cx, cy).\n\
00228 float64[9]  K # 3x3 row-major matrix\n\
00229 \n\
00230 # Rectification matrix (stereo cameras only)\n\
00231 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00232 # stereo image plane so that epipolar lines in both stereo images are\n\
00233 # parallel.\n\
00234 float64[9]  R # 3x3 row-major matrix\n\
00235 \n\
00236 # Projection/camera matrix\n\
00237 #     [fx'  0  cx' Tx]\n\
00238 # P = [ 0  fy' cy' Ty]\n\
00239 #     [ 0   0   1   0]\n\
00240 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00241 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00242 #  is the normal camera intrinsic matrix for the rectified image.\n\
00243 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00244 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00245 #  (cx', cy') - these may differ from the values in K.\n\
00246 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00247 #  also have R = the identity and P[1:3,1:3] = K.\n\
00248 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00249 #  position of the optical center of the second camera in the first\n\
00250 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00251 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00252 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00253 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00254 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00255 #  the rectified image is given by:\n\
00256 #  [u v w]' = P * [X Y Z 1]'\n\
00257 #         x = u / w\n\
00258 #         y = v / w\n\
00259 #  This holds for both images of a stereo pair.\n\
00260 float64[12] P # 3x4 row-major matrix\n\
00261 \n\
00262 \n\
00263 #######################################################################\n\
00264 #                      Operational Parameters                         #\n\
00265 #######################################################################\n\
00266 # These define the image region actually captured by the camera       #\n\
00267 # driver. Although they affect the geometry of the output image, they #\n\
00268 # may be changed freely without recalibrating the camera.             #\n\
00269 #######################################################################\n\
00270 \n\
00271 # Binning refers here to any camera setting which combines rectangular\n\
00272 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00273 #  resolution of the output image to\n\
00274 #  (width / binning_x) x (height / binning_y).\n\
00275 # The default values binning_x = binning_y = 0 is considered the same\n\
00276 #  as binning_x = binning_y = 1 (no subsampling).\n\
00277 uint32 binning_x\n\
00278 uint32 binning_y\n\
00279 \n\
00280 # Region of interest (subwindow of full camera resolution), given in\n\
00281 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00282 #  always denotes the same window of pixels on the camera sensor,\n\
00283 #  regardless of binning settings.\n\
00284 # The default setting of roi (all values 0) is considered the same as\n\
00285 #  full resolution (roi.width = width, roi.height = height).\n\
00286 RegionOfInterest roi\n\
00287 \n\
00288 ================================================================================\n\
00289 MSG: sensor_msgs/RegionOfInterest\n\
00290 # This message is used to specify a region of interest within an image.\n\
00291 #\n\
00292 # When used to specify the ROI setting of the camera when the image was\n\
00293 # taken, the height and width fields should either match the height and\n\
00294 # width fields for the associated image; or height = width = 0\n\
00295 # indicates that the full resolution image was captured.\n\
00296 \n\
00297 uint32 x_offset  # Leftmost pixel of the ROI\n\
00298                  # (0 if the ROI includes the left edge of the image)\n\
00299 uint32 y_offset  # Topmost pixel of the ROI\n\
00300                  # (0 if the ROI includes the top edge of the image)\n\
00301 uint32 height    # Height of ROI\n\
00302 uint32 width     # Width of ROI\n\
00303 \n\
00304 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00305 # ROI in this message. Typically this should be False if the full image\n\
00306 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00307 # used).\n\
00308 bool do_rectify\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: posedetection_msgs/Feature0D\n\
00312 Header header\n\
00313 float32[] positions # 2*N, 0-indexed\n\
00314 float32[] scales # N, optional\n\
00315 float32[] orientations # N, optional, along +X is 0\n\
00316 float32[] confidences\n\
00317 float32[] descriptors # N*descriptor_dim\n\
00318 int32 descriptor_dim\n\
00319 string type # type of feature\n\
00320 \n\
00321 ";
00322   }
00323 
00324   static const char* value(const  ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> &) { return value(); } 
00325 };
00326 
00327 } // namespace message_traits
00328 } // namespace ros
00329 
00330 namespace ros
00331 {
00332 namespace serialization
00333 {
00334 
00335 template<class ContainerAllocator> struct Serializer< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> >
00336 {
00337   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00338   {
00339     stream.next(m.image);
00340     stream.next(m.info);
00341     stream.next(m.features);
00342   }
00343 
00344   ROS_DECLARE_ALLINONE_SERIALIZER;
00345 }; // struct ImageFeature0D_
00346 } // namespace serialization
00347 } // namespace ros
00348 
00349 namespace ros
00350 {
00351 namespace message_operations
00352 {
00353 
00354 template<class ContainerAllocator>
00355 struct Printer< ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> >
00356 {
00357   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::posedetection_msgs::ImageFeature0D_<ContainerAllocator> & v) 
00358   {
00359     s << indent << "image: ";
00360 s << std::endl;
00361     Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + "  ", v.image);
00362     s << indent << "info: ";
00363 s << std::endl;
00364     Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + "  ", v.info);
00365     s << indent << "features: ";
00366 s << std::endl;
00367     Printer< ::posedetection_msgs::Feature0D_<ContainerAllocator> >::stream(s, indent + "  ", v.features);
00368   }
00369 };
00370 
00371 
00372 } // namespace message_operations
00373 } // namespace ros
00374 
00375 #endif // POSEDETECTION_MSGS_MESSAGE_IMAGEFEATURE0D_H
00376 
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Properties Friends


posedetection_msgs
Author(s): Rosen Diankov
autogenerated on Sat Mar 23 2013 12:47:59