00001 // Copyright (C) 2009, 2011 00002 00003 // Version: 1.0 00004 // Author: Ruben Smits, Herman Bruyninckx, Azamat Shakhimardanov 00005 // Maintainer: Ruben Smits, Azamat Shakhimardanov 00006 // URL: http://www.orocos.org/kdl 00007 00008 // This library is free software; you can redistribute it and/or 00009 // modify it under the terms of the GNU Lesser General Public 00010 // License as published by the Free Software Foundation; either 00011 // version 2.1 of the License, or (at your option) any later version. 00012 00013 // This library is distributed in the hope that it will be useful, 00014 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00015 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00016 // Lesser General Public License for more details. 00017 00018 // You should have received a copy of the GNU Lesser General Public 00019 // License along with this library; if not, write to the Free Software 00020 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 00021 00022 #include "chainidsolver_vereshchagin.hpp" 00023 #include "frames_io.hpp" 00024 #include "utilities/svd_eigen_HH.hpp" 00025 00026 00027 namespace KDL 00028 { 00029 using namespace Eigen; 00030 00031 ChainIdSolver_Vereshchagin::ChainIdSolver_Vereshchagin(const Chain& chain_, Twist root_acc, unsigned int _nc) : 00032 chain(chain_), nj(chain.getNrOfJoints()), ns(chain.getNrOfSegments()), nc(_nc), 00033 results(ns + 1, segment_info(nc)) 00034 { 00035 acc_root = root_acc; 00036 00037 //Provide the necessary memory for computing the inverse of M0 00038 nu_sum.resize(nc); 00039 M_0_inverse.resize(nc, nc); 00040 Um = MatrixXd::Identity(nc, nc); 00041 Vm = MatrixXd::Identity(nc, nc); 00042 Sm = VectorXd::Ones(nc); 00043 tmpm = VectorXd::Ones(nc); 00044 } 00045 00046 int ChainIdSolver_Vereshchagin::CartToJnt(const JntArray &q, const JntArray &q_dot, JntArray &q_dotdot, const Jacobian& alfa, const JntArray& beta, const Wrenches& f_ext, JntArray &torques) 00047 { 00048 //Check sizes always 00049 if (q.rows() != nj || q_dot.rows() != nj || q_dotdot.rows() != nj || torques.rows() != nj || f_ext.size() != ns) 00050 return -1; 00051 if (alfa.columns() != nc || beta.rows() != nc) 00052 return -2; 00053 //do an upward recursion for position and velocities 00054 this->initial_upwards_sweep(q, q_dot, q_dotdot, f_ext); 00055 //do an inward recursion for inertia, forces and constraints 00056 this->downwards_sweep(alfa, torques); 00057 //Solve for the constraint forces 00058 this->constraint_calculation(beta); 00059 //do an upward recursion to propagate the result 00060 this->final_upwards_sweep(q_dotdot, torques); 00061 return 0; 00062 } 00063 00064 void ChainIdSolver_Vereshchagin::initial_upwards_sweep(const JntArray &q, const JntArray &qdot, const JntArray &qdotdot, const Wrenches& f_ext) 00065 { 00066 //if (q.rows() != nj || qdot.rows() != nj || qdotdot.rows() != nj || f_ext.size() != ns) 00067 // return -1; 00068 00069 unsigned int j = 0; 00070 F_total = Frame::Identity(); 00071 for (unsigned int i = 0; i < ns; i++) 00072 { 00073 //Express everything in the segments reference frame (body coordinates) 00074 //which is at the segments tip, i.e. where the next joint is attached. 00075 00076 //Calculate segment properties: X,S,vj,cj 00077 const Segment& segment = chain.getSegment(i); 00078 segment_info& s = results[i + 1]; 00079 //The pose between the joint root and the segment tip (tip expressed in joint root coordinates) 00080 s.F = segment.pose(q(j)); //X pose of each link in link coord system 00081 00082 F_total = F_total * s.F; //X pose of the each link in root coord system 00083 s.F_base = F_total; //X pose of the each link in root coord system for getter functions 00084 00085 //The velocity due to the joint motion of the segment expressed in the segments reference frame (tip) 00086 Twist vj = s.F.M.Inverse(segment.twist(q(j), qdot(j))); //XDot of each link 00087 Twist aj = s.F.M.Inverse(segment.twist(q(j), qdotdot(j))); //XDotDot of each link 00088 00089 //The unit velocity due to the joint motion of the segment expressed in the segments reference frame (tip) 00090 s.Z = s.F.M.Inverse(segment.twist(q(j), 1.0)); 00091 //Put Z in the joint root reference frame: 00092 s.Z = s.F * s.Z; 00093 00094 //The total velocity of the segment expressed in the the segments reference frame (tip) 00095 if (i != 0) 00096 { 00097 s.v = s.F.Inverse(results[i].v) + vj; // recursive velocity of each link in segment frame 00098 //s.A=s.F.Inverse(results[i].A)+aj; 00099 s.A = s.F.M.Inverse(results[i].A); 00100 } 00101 else 00102 { 00103 s.v = vj; 00104 s.A = s.F.M.Inverse(acc_root); 00105 } 00106 //c[i] = cj + v[i]xvj (remark: cj=0, since our S is not time dependent in local coordinates) 00107 //The velocity product acceleration 00108 //std::cout << i << " Initial upward" << s.v << std::endl; 00109 s.C = s.v*vj; //This is a cross product: cartesian space BIAS acceleration in local link coord. 00110 //Put C in the joint root reference frame 00111 s.C = s.F * s.C; //+F_total.M.Inverse(acc_root)); 00112 //The rigid body inertia of the segment, expressed in the segments reference frame (tip) 00113 s.H = segment.getInertia(); 00114 00115 //wrench of the rigid body bias forces and the external forces on the segment (in body coordinates, tip) 00116 //external forces are taken into account through s.U. 00117 Wrench FextLocal = F_total.M.Inverse() * f_ext[i]; 00118 s.U = s.v * (s.H * s.v) - FextLocal; //f_ext[i]; 00119 if (segment.getJoint().getType() != Joint::None) 00120 j++; 00121 } 00122 00123 } 00124 00125 void ChainIdSolver_Vereshchagin::downwards_sweep(const Jacobian& alfa, const JntArray &torques) 00126 { 00127 unsigned int j = nj - 1; 00128 for (int i = ns; i >= 0; i--) 00129 { 00130 //Get a handle for the segment we are working on. 00131 segment_info& s = results[i]; 00132 //For segment N, 00133 //tilde is in the segment refframe (tip, not joint root) 00134 //without tilde is at the joint root (the childs tip!!!) 00135 //P_tilde is the articulated body inertia 00136 //R_tilde is the sum of external and coriolis/centrifugal forces 00137 //M is the (unit) acceleration energy already generated at link i 00138 //G is the (unit) magnitude of the constraint forces at link i 00139 //E are the (unit) constraint forces due to the constraints 00140 if (i == ns) 00141 { 00142 s.P_tilde = s.H; 00143 s.R_tilde = s.U; 00144 s.M.setZero(); 00145 s.G.setZero(); 00146 //changeBase(alfa_N,F_total.M.Inverse(),alfa_N2); 00147 for (unsigned int r = 0; r < 3; r++) 00148 for (unsigned int c = 0; c < nc; c++) 00149 { 00150 //copy alfa constrain force matrix in E~ 00151 s.E_tilde(r, c) = alfa(r + 3, c); 00152 s.E_tilde(r + 3, c) = alfa(r, c); 00153 } 00154 //Change the reference frame of alfa to the segmentN tip frame 00155 //F_Total holds end effector frame, if done per segment bases then constraints could be extended to all segments 00156 Rotation base_to_end = F_total.M.Inverse(); 00157 for (unsigned int c = 0; c < nc; c++) 00158 { 00159 Wrench col(Vector(s.E_tilde(3, c), s.E_tilde(4, c), s.E_tilde(5, c)), 00160 Vector(s.E_tilde(0, c), s.E_tilde(1, c), s.E_tilde(2, c))); 00161 col = base_to_end*col; 00162 s.E_tilde.col(c) << Vector3d::Map(col.torque.data), Vector3d::Map(col.force.data); 00163 } 00164 } 00165 else 00166 { 00167 //For all others: 00168 //Everything should expressed in the body coordinates of segment i 00169 segment_info& child = results[i + 1]; 00170 //Copy PZ into a vector so we can do matrix manipulations, put torques above forces 00171 Vector6d vPZ; 00172 vPZ << Vector3d::Map(child.PZ.torque.data), Vector3d::Map(child.PZ.force.data); 00173 Matrix6d PZDPZt = (vPZ * vPZ.transpose()).lazy(); 00174 PZDPZt /= child.D; 00175 00176 //equation a) (see Vereshchagin89) PZDPZt=[I,H;H',M] 00177 //Azamat:articulated body inertia as in Featherstone (7.19) 00178 s.P_tilde = s.H + child.P - ArticulatedBodyInertia(PZDPZt.corner < 3, 3 > (BottomRight), PZDPZt.corner < 3, 3 > (TopRight), PZDPZt.corner < 3, 3 > (TopLeft)); 00179 //equation b) (see Vereshchagin89) 00180 //Azamat: bias force as in Featherstone (7.20) 00181 s.R_tilde = s.U + child.R + child.PC + (child.PZ / child.D) * child.u; 00182 //equation c) (see Vereshchagin89) 00183 s.E_tilde = child.E; 00184 00185 //Azamat: equation (c) right side term 00186 s.E_tilde -= (vPZ * child.EZ.transpose()).lazy() / child.D; 00187 00188 //equation d) (see Vereshchagin89) 00189 s.M = child.M; 00190 //Azamat: equation (d) right side term 00191 s.M -= (child.EZ * child.EZ.transpose()).lazy() / child.D; 00192 00193 //equation e) (see Vereshchagin89) 00194 s.G = child.G; 00195 Twist CiZDu = child.C + (child.Z / child.D) * child.u; 00196 Vector6d vCiZDu; 00197 vCiZDu << Vector3d::Map(CiZDu.rot.data), Vector3d::Map(CiZDu.vel.data); 00198 s.G += (child.E.transpose() * vCiZDu).lazy(); 00199 } 00200 if (i != 0) 00201 { 00202 //Transform all results to joint root coordinates of segment i (== body coordinates segment i-1) 00203 //equation a) 00204 s.P = s.F * s.P_tilde; 00205 //equation b) 00206 s.R = s.F * s.R_tilde; 00207 //equation c), in matrix: torques above forces, so switch and switch back 00208 for (unsigned int c = 0; c < nc; c++) 00209 { 00210 Wrench col(Vector(s.E_tilde(3, c), s.E_tilde(4, c), s.E_tilde(5, c)), 00211 Vector(s.E_tilde(0, c), s.E_tilde(1, c), s.E_tilde(2, c))); 00212 col = s.F*col; 00213 s.E.col(c) << Vector3d::Map(col.torque.data), Vector3d::Map(col.force.data); 00214 } 00215 00216 //needed for next recursion 00217 s.PZ = s.P * s.Z; 00218 s.D = dot(s.Z, s.PZ); 00219 s.PC = s.P * s.C; 00220 00221 //u=(Q-Z(R+PC)=sum of external forces along the joint axes, 00222 //R are the forces comming from the children, 00223 //Q is taken zero (do we need to take the previous calculated torques? 00224 00225 //projection of coriolis and centrepital forces into joint subspace (0 0 Z) 00226 s.totalBias = -dot(s.Z, s.R + s.PC); 00227 s.u = torques(j) + s.totalBias; 00228 00229 //Matrix form of Z, put rotations above translations 00230 Vector6d vZ; 00231 vZ << Vector3d::Map(s.Z.rot.data), Vector3d::Map(s.Z.vel.data); 00232 s.EZ = (s.E.transpose() * vZ).lazy(); 00233 00234 if (chain.getSegment(i - 1).getJoint().getType() != Joint::None) 00235 j--; 00236 } 00237 } 00238 } 00239 00240 void ChainIdSolver_Vereshchagin::constraint_calculation(const JntArray& beta) 00241 { 00242 //equation f) nu = M_0_inverse*(beta_N - E0_tilde`*acc0 - G0) 00243 //M_0_inverse, always nc*nc symmetric matrix 00244 //std::cout<<"M0: "<<results[0].M<<std::endl; 00245 //results[0].M-=MatrixXd::Identity(nc,nc); 00246 //std::cout<<"augmented M0: "<<results[0].M<<std::endl; 00247 00248 00249 //ToDo: Need to check ill conditions 00250 00251 //M_0_inverse=results[0].M.inverse(); 00252 svd_eigen_HH(results[0].M, Um, Sm, Vm, tmpm); 00253 //truncated svd, what would sdls, dls physically mean? 00254 for (unsigned int i = 0; i < nc; i++) 00255 if (Sm(i) < 1e-14) 00256 Sm(i) = 0.0; 00257 else 00258 Sm(i) = 1 / Sm(i); 00259 00260 results[0].M = (Vm * Sm.asDiagonal()).lazy(); 00261 M_0_inverse = (results[0].M * Um.transpose()).lazy(); 00262 //results[0].M.ldlt().solve(MatrixXd::Identity(nc,nc),&M_0_inverse); 00263 //results[0].M.computeInverse(&M_0_inverse); 00264 Vector6d acc; 00265 acc << Vector3d::Map(acc_root.rot.data), Vector3d::Map(acc_root.vel.data); 00266 nu_sum = -(results[0].E_tilde.transpose() * acc).lazy(); 00267 //nu_sum.setZero(); 00268 nu_sum += beta.data; 00269 nu_sum -= results[0].G; 00270 00271 //equation f) nu = M_0_inverse*(beta_N - E0_tilde`*acc0 - G0) 00272 nu = (M_0_inverse * nu_sum).lazy(); 00273 } 00274 00275 void ChainIdSolver_Vereshchagin::final_upwards_sweep(JntArray &q_dotdot, JntArray &torques) 00276 { 00277 unsigned int j = 0; 00278 00279 for (unsigned int i = 1; i <= ns; i++) 00280 { 00281 segment_info& s = results[i]; 00282 //Calculation of joint and segment accelerations 00283 //equation g) qdotdot[i] = D^-1*(Q - Z'(R + P(C + acc[i-1]) + E*nu)) 00284 // = D^-1(u - Z'(P*acc[i-1] + E*nu) 00285 Twist a_g; 00286 Twist a_p; 00287 if (i == 1) 00288 { 00289 a_p = acc_root; 00290 } 00291 else 00292 { 00293 a_p = results[i - 1].acc; 00294 } 00295 00296 //The contribution of the constraint forces at segment i 00297 Vector6d tmp = s.E*nu; 00298 Wrench constraint_force = Wrench(Vector(tmp(3), tmp(4), tmp(5)), 00299 Vector(tmp(0), tmp(1), tmp(2))); 00300 00301 //acceleration components are also computed 00302 //Contribution of the acceleration of the parent (i-1) 00303 Wrench parent_force = s.P*a_p; 00304 double parent_forceProjection = -dot(s.Z, parent_force); 00305 double parentAccComp = parent_forceProjection / s.D; 00306 00307 //The constraint force and acceleration force projected on the joint axes -> axis torque/force 00308 double constraint_torque = -dot(s.Z, constraint_force); 00309 //The result should be the torque at this joint 00310 00311 torques(j) = constraint_torque; 00312 //s.constAccComp = torques(j) / s.D; 00313 s.constAccComp = constraint_torque / s.D; 00314 s.nullspaceAccComp = s.u / s.D; 00315 //total joint space acceleration resulting from accelerations of parent joints, constraint forces and 00316 // nullspace forces. 00317 q_dotdot(j) = (s.nullspaceAccComp + parentAccComp + s.constAccComp); 00318 s.acc = s.F.Inverse(a_p + s.Z * q_dotdot(j) + s.C);//returns acceleration in link distal tip coordinates. For use needs to be transformed 00319 if (chain.getSegment(i - 1).getJoint().getType() != Joint::None) 00320 j++; 00321 } 00322 } 00323 00324 /* 00325 void ChainIdSolver_Vereshchagin::getLinkCartesianPose(Frames& x_base) 00326 { 00327 for (int i = 0; i < ns; i++) 00328 { 00329 x_base[i] = results[i + 1].F_base; 00330 } 00331 return; 00332 } 00333 00334 void ChainIdSolver_Vereshchagin::getLinkCartesianVelocity(Twists& xDot_base) 00335 { 00336 00337 for (int i = 0; i < ns; i++) 00338 { 00339 xDot_base[i] = results[i + 1].F_base.M * results[i + 1].v; 00340 } 00341 return; 00342 } 00343 00344 void ChainIdSolver_Vereshchagin::getLinkCartesianAcceleration(Twists& xDotDot_base) 00345 { 00346 00347 for (int i = 0; i < ns; i++) 00348 { 00349 xDotDot_base[i] = results[i + 1].F_base.M * results[i + 1].acc; 00350 //std::cout << "XDotDot_base[i] " << xDotDot_base[i] << std::endl; 00351 } 00352 return; 00353 } 00354 00355 void ChainIdSolver_Vereshchagin::getLinkPose(Frames& x_local) 00356 { 00357 for (int i = 0; i < ns; i++) 00358 { 00359 x_local[i] = results[i + 1].F; 00360 } 00361 return; 00362 } 00363 00364 void ChainIdSolver_Vereshchagin::getLinkVelocity(Twists& xDot_local) 00365 { 00366 for (int i = 0; i < ns; i++) 00367 { 00368 xDot_local[i] = results[i + 1].v; 00369 } 00370 return; 00371 00372 } 00373 00374 void ChainIdSolver_Vereshchagin::getLinkAcceleration(Twists& xDotdot_local) 00375 { 00376 for (int i = 0; i < ns; i++) 00377 { 00378 xDotdot_local[i] = results[i + 1].acc; 00379 } 00380 return; 00381 00382 } 00383 00384 void ChainIdSolver_Vereshchagin::getJointBiasAcceleration(JntArray& bias_q_dotdot) 00385 { 00386 for (int i = 0; i < ns; i++) 00387 { 00388 //this is only force 00389 double tmp = results[i + 1].totalBias; 00390 //this is accelleration 00391 bias_q_dotdot(i) = tmp / results[i + 1].D; 00392 00393 //s.totalBias = - dot(s.Z, s.R + s.PC); 00394 //std::cout << "totalBiasAccComponent" << i << ": " << bias_q_dotdot(i) << std::endl; 00395 //bias_q_dotdot(i) = s.totalBias/s.D 00396 00397 } 00398 return; 00399 00400 } 00401 00402 void ChainIdSolver_Vereshchagin::getJointConstraintAcceleration(JntArray& constraint_q_dotdot) 00403 { 00404 for (int i = 0; i < ns; i++) 00405 { 00406 constraint_q_dotdot(i) = results[i + 1].constAccComp; 00407 //double tmp = results[i + 1].u; 00408 //s.u = torques(j) + s.totalBias; 00409 // std::cout << "s.constraintAccComp" << i << ": " << results[i+1].constAccComp << std::endl; 00410 //nullspace_q_dotdot(i) = s.u/s.D 00411 00412 } 00413 return; 00414 00415 00416 } 00417 00418 //Check the name it does not seem to be appropriate 00419 00420 void ChainIdSolver_Vereshchagin::getJointNullSpaceAcceleration(JntArray& nullspace_q_dotdot) 00421 { 00422 for (int i = 0; i < ns; i++) 00423 { 00424 nullspace_q_dotdot(i) = results[i + 1].nullspaceAccComp; 00425 //double tmp = results[i + 1].u; 00426 //s.u = torques(j) + s.totalBias; 00427 //std::cout << "s.nullSpaceAccComp" << i << ": " << results[i+1].nullspaceAccComp << std::endl; 00428 //nullspace_q_dotdot(i) = s.u/s.D 00429 00430 } 00431 return; 00432 00433 00434 } 00435 00436 //This is not only a bias force energy but also includes generalized forces 00437 //change type of parameter G 00438 //this method should retur array of G's 00439 00440 void ChainIdSolver_Vereshchagin::getLinkBiasForceAcceleratoinEnergy(Eigen::VectorXd& G) 00441 { 00442 for (int i = 0; i < ns; i++) 00443 { 00444 G = results[i + 1].G; 00445 //double tmp = results[i + 1].u; 00446 //s.u = torques(j) + s.totalBias; 00447 //std::cout << "s.G " << i << ": " << results[i+1].G << std::endl; 00448 //nullspace_q_dotdot(i) = s.u/s.D 00449 00450 } 00451 return; 00452 00453 } 00454 00455 //this method should retur array of R's 00456 00457 void ChainIdSolver_Vereshchagin::getLinkBiasForceMatrix(Wrenches& R_tilde) 00458 { 00459 for (int i = 0; i < ns; i++) 00460 { 00461 R_tilde[i] = results[i + 1].R_tilde; 00462 //Azamat: bias force as in Featherstone (7.20) 00463 //s.R_tilde = s.U + child.R + child.PC + child.PZ / child.D * child.u; 00464 std::cout << "s.R_tilde " << i << ": " << results[i + 1].R_tilde << std::endl; 00465 } 00466 return; 00467 } 00468 00469 */ 00470 00471 }//namespace