00001
00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H
00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "sensor_msgs/Image.h"
00018 #include "sensor_msgs/CameraInfo.h"
00019 #include "object_recognition_gui/ModelHypothesisList.h"
00020
00021 namespace object_recognition_gui
00022 {
00023 template <class ContainerAllocator>
00024 struct ObjectRecognitionGuiGoal_ {
00025 typedef ObjectRecognitionGuiGoal_<ContainerAllocator> Type;
00026
00027 ObjectRecognitionGuiGoal_()
00028 : image()
00029 , camera_info()
00030 , model_hypotheses()
00031 {
00032 }
00033
00034 ObjectRecognitionGuiGoal_(const ContainerAllocator& _alloc)
00035 : image(_alloc)
00036 , camera_info(_alloc)
00037 , model_hypotheses(_alloc)
00038 {
00039 }
00040
00041 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00042 ::sensor_msgs::Image_<ContainerAllocator> image;
00043
00044 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00045 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00046
00047 typedef std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > _model_hypotheses_type;
00048 std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > model_hypotheses;
00049
00050
00051 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > Ptr;
00052 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> const> ConstPtr;
00053 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 };
00055 typedef ::object_recognition_gui::ObjectRecognitionGuiGoal_<std::allocator<void> > ObjectRecognitionGuiGoal;
00056
00057 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal> ObjectRecognitionGuiGoalPtr;
00058 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal const> ObjectRecognitionGuiGoalConstPtr;
00059
00060
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> & v)
00063 {
00064 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >::stream(s, "", v);
00065 return s;}
00066
00067 }
00068
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "a0e81c2c24c7bbc0a1bc7c21f4c1b1c6";
00080 }
00081
00082 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); }
00083 static const uint64_t static_value1 = 0xa0e81c2c24c7bbc0ULL;
00084 static const uint64_t static_value2 = 0xa1bc7c21f4c1b1c6ULL;
00085 };
00086
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "object_recognition_gui/ObjectRecognitionGuiGoal";
00092 }
00093
00094 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); }
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 #the original sensor data (depth/disparity image)\n\
00104 sensor_msgs/Image image\n\
00105 sensor_msgs/CameraInfo camera_info\n\
00106 \n\
00107 #list of mesh/pose hypotheses for each recognized point cluster\n\
00108 ModelHypothesisList[] model_hypotheses\n\
00109 \n\
00110 ================================================================================\n\
00111 MSG: sensor_msgs/Image\n\
00112 # This message contains an uncompressed image\n\
00113 # (0, 0) is at top-left corner of image\n\
00114 #\n\
00115 \n\
00116 Header header # Header timestamp should be acquisition time of image\n\
00117 # Header frame_id should be optical frame of camera\n\
00118 # origin of frame should be optical center of cameara\n\
00119 # +x should point to the right in the image\n\
00120 # +y should point down in the image\n\
00121 # +z should point into to plane of the image\n\
00122 # If the frame_id here and the frame_id of the CameraInfo\n\
00123 # message associated with the image conflict\n\
00124 # the behavior is undefined\n\
00125 \n\
00126 uint32 height # image height, that is, number of rows\n\
00127 uint32 width # image width, that is, number of columns\n\
00128 \n\
00129 # The legal values for encoding are in file src/image_encodings.cpp\n\
00130 # If you want to standardize a new string format, join\n\
00131 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00132 \n\
00133 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00134 # taken from the list of strings in src/image_encodings.cpp\n\
00135 \n\
00136 uint8 is_bigendian # is this data bigendian?\n\
00137 uint32 step # Full row length in bytes\n\
00138 uint8[] data # actual matrix data, size is (step * rows)\n\
00139 \n\
00140 ================================================================================\n\
00141 MSG: std_msgs/Header\n\
00142 # Standard metadata for higher-level stamped data types.\n\
00143 # This is generally used to communicate timestamped data \n\
00144 # in a particular coordinate frame.\n\
00145 # \n\
00146 # sequence ID: consecutively increasing ID \n\
00147 uint32 seq\n\
00148 #Two-integer timestamp that is expressed as:\n\
00149 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00150 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00151 # time-handling sugar is provided by the client library\n\
00152 time stamp\n\
00153 #Frame this data is associated with\n\
00154 # 0: no frame\n\
00155 # 1: global frame\n\
00156 string frame_id\n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: sensor_msgs/CameraInfo\n\
00160 # This message defines meta information for a camera. It should be in a\n\
00161 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00162 # image topics named:\n\
00163 #\n\
00164 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00165 # image - monochrome, distorted\n\
00166 # image_color - color, distorted\n\
00167 # image_rect - monochrome, rectified\n\
00168 # image_rect_color - color, rectified\n\
00169 #\n\
00170 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00171 # for producing the four processed image topics from image_raw and\n\
00172 # camera_info. The meaning of the camera parameters are described in\n\
00173 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00174 #\n\
00175 # The image_geometry package provides a user-friendly interface to\n\
00176 # common operations using this meta information. If you want to, e.g.,\n\
00177 # project a 3d point into image coordinates, we strongly recommend\n\
00178 # using image_geometry.\n\
00179 #\n\
00180 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00181 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00182 # indicates an uncalibrated camera.\n\
00183 \n\
00184 #######################################################################\n\
00185 # Image acquisition info #\n\
00186 #######################################################################\n\
00187 \n\
00188 # Time of image acquisition, camera coordinate frame ID\n\
00189 Header header # Header timestamp should be acquisition time of image\n\
00190 # Header frame_id should be optical frame of camera\n\
00191 # origin of frame should be optical center of camera\n\
00192 # +x should point to the right in the image\n\
00193 # +y should point down in the image\n\
00194 # +z should point into the plane of the image\n\
00195 \n\
00196 \n\
00197 #######################################################################\n\
00198 # Calibration Parameters #\n\
00199 #######################################################################\n\
00200 # These are fixed during camera calibration. Their values will be the #\n\
00201 # same in all messages until the camera is recalibrated. Note that #\n\
00202 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00203 # #\n\
00204 # The internal parameters can be used to warp a raw (distorted) image #\n\
00205 # to: #\n\
00206 # 1. An undistorted image (requires D and K) #\n\
00207 # 2. A rectified image (requires D, K, R) #\n\
00208 # The projection matrix P projects 3D points into the rectified image.#\n\
00209 #######################################################################\n\
00210 \n\
00211 # The image dimensions with which the camera was calibrated. Normally\n\
00212 # this will be the full camera resolution in pixels.\n\
00213 uint32 height\n\
00214 uint32 width\n\
00215 \n\
00216 # The distortion model used. Supported models are listed in\n\
00217 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00218 # simple model of radial and tangential distortion - is sufficent.\n\
00219 string distortion_model\n\
00220 \n\
00221 # The distortion parameters, size depending on the distortion model.\n\
00222 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00223 float64[] D\n\
00224 \n\
00225 # Intrinsic camera matrix for the raw (distorted) images.\n\
00226 # [fx 0 cx]\n\
00227 # K = [ 0 fy cy]\n\
00228 # [ 0 0 1]\n\
00229 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00230 # coordinates using the focal lengths (fx, fy) and principal point\n\
00231 # (cx, cy).\n\
00232 float64[9] K # 3x3 row-major matrix\n\
00233 \n\
00234 # Rectification matrix (stereo cameras only)\n\
00235 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00236 # stereo image plane so that epipolar lines in both stereo images are\n\
00237 # parallel.\n\
00238 float64[9] R # 3x3 row-major matrix\n\
00239 \n\
00240 # Projection/camera matrix\n\
00241 # [fx' 0 cx' Tx]\n\
00242 # P = [ 0 fy' cy' Ty]\n\
00243 # [ 0 0 1 0]\n\
00244 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00245 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00246 # is the normal camera intrinsic matrix for the rectified image.\n\
00247 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00248 # coordinates using the focal lengths (fx', fy') and principal point\n\
00249 # (cx', cy') - these may differ from the values in K.\n\
00250 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00251 # also have R = the identity and P[1:3,1:3] = K.\n\
00252 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00253 # position of the optical center of the second camera in the first\n\
00254 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00255 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00256 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00257 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00258 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00259 # the rectified image is given by:\n\
00260 # [u v w]' = P * [X Y Z 1]'\n\
00261 # x = u / w\n\
00262 # y = v / w\n\
00263 # This holds for both images of a stereo pair.\n\
00264 float64[12] P # 3x4 row-major matrix\n\
00265 \n\
00266 \n\
00267 #######################################################################\n\
00268 # Operational Parameters #\n\
00269 #######################################################################\n\
00270 # These define the image region actually captured by the camera #\n\
00271 # driver. Although they affect the geometry of the output image, they #\n\
00272 # may be changed freely without recalibrating the camera. #\n\
00273 #######################################################################\n\
00274 \n\
00275 # Binning refers here to any camera setting which combines rectangular\n\
00276 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00277 # resolution of the output image to\n\
00278 # (width / binning_x) x (height / binning_y).\n\
00279 # The default values binning_x = binning_y = 0 is considered the same\n\
00280 # as binning_x = binning_y = 1 (no subsampling).\n\
00281 uint32 binning_x\n\
00282 uint32 binning_y\n\
00283 \n\
00284 # Region of interest (subwindow of full camera resolution), given in\n\
00285 # full resolution (unbinned) image coordinates. A particular ROI\n\
00286 # always denotes the same window of pixels on the camera sensor,\n\
00287 # regardless of binning settings.\n\
00288 # The default setting of roi (all values 0) is considered the same as\n\
00289 # full resolution (roi.width = width, roi.height = height).\n\
00290 RegionOfInterest roi\n\
00291 \n\
00292 ================================================================================\n\
00293 MSG: sensor_msgs/RegionOfInterest\n\
00294 # This message is used to specify a region of interest within an image.\n\
00295 #\n\
00296 # When used to specify the ROI setting of the camera when the image was\n\
00297 # taken, the height and width fields should either match the height and\n\
00298 # width fields for the associated image; or height = width = 0\n\
00299 # indicates that the full resolution image was captured.\n\
00300 \n\
00301 uint32 x_offset # Leftmost pixel of the ROI\n\
00302 # (0 if the ROI includes the left edge of the image)\n\
00303 uint32 y_offset # Topmost pixel of the ROI\n\
00304 # (0 if the ROI includes the top edge of the image)\n\
00305 uint32 height # Height of ROI\n\
00306 uint32 width # Width of ROI\n\
00307 \n\
00308 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00309 # ROI in this message. Typically this should be False if the full image\n\
00310 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00311 # used).\n\
00312 bool do_rectify\n\
00313 \n\
00314 ================================================================================\n\
00315 MSG: object_recognition_gui/ModelHypothesisList\n\
00316 ModelHypothesis[] hypotheses\n\
00317 \n\
00318 #initial guess if this can be a correct recognition result at all\n\
00319 bool accept\n\
00320 ================================================================================\n\
00321 MSG: object_recognition_gui/ModelHypothesis\n\
00322 #describes a hypothesis about a recognized object (mesh+pose)\n\
00323 \n\
00324 arm_navigation_msgs/Shape mesh\n\
00325 geometry_msgs/PoseStamped pose\n\
00326 \n\
00327 ================================================================================\n\
00328 MSG: arm_navigation_msgs/Shape\n\
00329 byte SPHERE=0\n\
00330 byte BOX=1\n\
00331 byte CYLINDER=2\n\
00332 byte MESH=3\n\
00333 \n\
00334 byte type\n\
00335 \n\
00336 \n\
00337 #### define sphere, box, cylinder ####\n\
00338 # the origin of each shape is considered at the shape's center\n\
00339 \n\
00340 # for sphere\n\
00341 # radius := dimensions[0]\n\
00342 \n\
00343 # for cylinder\n\
00344 # radius := dimensions[0]\n\
00345 # length := dimensions[1]\n\
00346 # the length is along the Z axis\n\
00347 \n\
00348 # for box\n\
00349 # size_x := dimensions[0]\n\
00350 # size_y := dimensions[1]\n\
00351 # size_z := dimensions[2]\n\
00352 float64[] dimensions\n\
00353 \n\
00354 \n\
00355 #### define mesh ####\n\
00356 \n\
00357 # list of triangles; triangle k is defined by tre vertices located\n\
00358 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00359 int32[] triangles\n\
00360 geometry_msgs/Point[] vertices\n\
00361 \n\
00362 ================================================================================\n\
00363 MSG: geometry_msgs/Point\n\
00364 # This contains the position of a point in free space\n\
00365 float64 x\n\
00366 float64 y\n\
00367 float64 z\n\
00368 \n\
00369 ================================================================================\n\
00370 MSG: geometry_msgs/PoseStamped\n\
00371 # A Pose with reference coordinate frame and timestamp\n\
00372 Header header\n\
00373 Pose pose\n\
00374 \n\
00375 ================================================================================\n\
00376 MSG: geometry_msgs/Pose\n\
00377 # A representation of pose in free space, composed of postion and orientation. \n\
00378 Point position\n\
00379 Quaternion orientation\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: geometry_msgs/Quaternion\n\
00383 # This represents an orientation in free space in quaternion form.\n\
00384 \n\
00385 float64 x\n\
00386 float64 y\n\
00387 float64 z\n\
00388 float64 w\n\
00389 \n\
00390 ";
00391 }
00392
00393 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); }
00394 };
00395
00396 }
00397 }
00398
00399 namespace ros
00400 {
00401 namespace serialization
00402 {
00403
00404 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >
00405 {
00406 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00407 {
00408 stream.next(m.image);
00409 stream.next(m.camera_info);
00410 stream.next(m.model_hypotheses);
00411 }
00412
00413 ROS_DECLARE_ALLINONE_SERIALIZER;
00414 };
00415 }
00416 }
00417
00418 namespace ros
00419 {
00420 namespace message_operations
00421 {
00422
00423 template<class ContainerAllocator>
00424 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >
00425 {
00426 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> & v)
00427 {
00428 s << indent << "image: ";
00429 s << std::endl;
00430 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00431 s << indent << "camera_info: ";
00432 s << std::endl;
00433 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
00434 s << indent << "model_hypotheses[]" << std::endl;
00435 for (size_t i = 0; i < v.model_hypotheses.size(); ++i)
00436 {
00437 s << indent << " model_hypotheses[" << i << "]: ";
00438 s << std::endl;
00439 s << indent;
00440 Printer< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::stream(s, indent + " ", v.model_hypotheses[i]);
00441 }
00442 }
00443 };
00444
00445
00446 }
00447 }
00448
00449 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H
00450