00001
00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTION_H
00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_recognition_gui/ObjectRecognitionGuiActionGoal.h"
00018 #include "object_recognition_gui/ObjectRecognitionGuiActionResult.h"
00019 #include "object_recognition_gui/ObjectRecognitionGuiActionFeedback.h"
00020
00021 namespace object_recognition_gui
00022 {
00023 template <class ContainerAllocator>
00024 struct ObjectRecognitionGuiAction_ {
00025 typedef ObjectRecognitionGuiAction_<ContainerAllocator> Type;
00026
00027 ObjectRecognitionGuiAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 ObjectRecognitionGuiAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_recognition_gui::ObjectRecognitionGuiActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_recognition_gui::ObjectRecognitionGuiActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_recognition_gui::ObjectRecognitionGuiActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_recognition_gui::ObjectRecognitionGuiActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > Ptr;
00052 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> const> ConstPtr;
00053 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 };
00055 typedef ::object_recognition_gui::ObjectRecognitionGuiAction_<std::allocator<void> > ObjectRecognitionGuiAction;
00056
00057 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction> ObjectRecognitionGuiActionPtr;
00058 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction const> ObjectRecognitionGuiActionConstPtr;
00059
00060
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> & v)
00063 {
00064 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> >::stream(s, "", v);
00065 return s;}
00066
00067 }
00068
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "ceb5b2d8cb3006a85f5fabfab9056abe";
00080 }
00081
00082 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> &) { return value(); }
00083 static const uint64_t static_value1 = 0xceb5b2d8cb3006a8ULL;
00084 static const uint64_t static_value2 = 0x5f5fabfab9056abeULL;
00085 };
00086
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "object_recognition_gui/ObjectRecognitionGuiAction";
00092 }
00093
00094 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> &) { return value(); }
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 ObjectRecognitionGuiActionGoal action_goal\n\
00104 ObjectRecognitionGuiActionResult action_result\n\
00105 ObjectRecognitionGuiActionFeedback action_feedback\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: object_recognition_gui/ObjectRecognitionGuiActionGoal\n\
00109 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00110 \n\
00111 Header header\n\
00112 actionlib_msgs/GoalID goal_id\n\
00113 ObjectRecognitionGuiGoal goal\n\
00114 \n\
00115 ================================================================================\n\
00116 MSG: std_msgs/Header\n\
00117 # Standard metadata for higher-level stamped data types.\n\
00118 # This is generally used to communicate timestamped data \n\
00119 # in a particular coordinate frame.\n\
00120 # \n\
00121 # sequence ID: consecutively increasing ID \n\
00122 uint32 seq\n\
00123 #Two-integer timestamp that is expressed as:\n\
00124 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00125 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00126 # time-handling sugar is provided by the client library\n\
00127 time stamp\n\
00128 #Frame this data is associated with\n\
00129 # 0: no frame\n\
00130 # 1: global frame\n\
00131 string frame_id\n\
00132 \n\
00133 ================================================================================\n\
00134 MSG: actionlib_msgs/GoalID\n\
00135 # The stamp should store the time at which this goal was requested.\n\
00136 # It is used by an action server when it tries to preempt all\n\
00137 # goals that were requested before a certain time\n\
00138 time stamp\n\
00139 \n\
00140 # The id provides a way to associate feedback and\n\
00141 # result message with specific goal requests. The id\n\
00142 # specified must be unique.\n\
00143 string id\n\
00144 \n\
00145 \n\
00146 ================================================================================\n\
00147 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\
00148 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00149 \n\
00150 #the original sensor data (depth/disparity image)\n\
00151 sensor_msgs/Image image\n\
00152 sensor_msgs/CameraInfo camera_info\n\
00153 \n\
00154 #list of mesh/pose hypotheses for each recognized point cluster\n\
00155 ModelHypothesisList[] model_hypotheses\n\
00156 \n\
00157 ================================================================================\n\
00158 MSG: sensor_msgs/Image\n\
00159 # This message contains an uncompressed image\n\
00160 # (0, 0) is at top-left corner of image\n\
00161 #\n\
00162 \n\
00163 Header header # Header timestamp should be acquisition time of image\n\
00164 # Header frame_id should be optical frame of camera\n\
00165 # origin of frame should be optical center of cameara\n\
00166 # +x should point to the right in the image\n\
00167 # +y should point down in the image\n\
00168 # +z should point into to plane of the image\n\
00169 # If the frame_id here and the frame_id of the CameraInfo\n\
00170 # message associated with the image conflict\n\
00171 # the behavior is undefined\n\
00172 \n\
00173 uint32 height # image height, that is, number of rows\n\
00174 uint32 width # image width, that is, number of columns\n\
00175 \n\
00176 # The legal values for encoding are in file src/image_encodings.cpp\n\
00177 # If you want to standardize a new string format, join\n\
00178 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00179 \n\
00180 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00181 # taken from the list of strings in src/image_encodings.cpp\n\
00182 \n\
00183 uint8 is_bigendian # is this data bigendian?\n\
00184 uint32 step # Full row length in bytes\n\
00185 uint8[] data # actual matrix data, size is (step * rows)\n\
00186 \n\
00187 ================================================================================\n\
00188 MSG: sensor_msgs/CameraInfo\n\
00189 # This message defines meta information for a camera. It should be in a\n\
00190 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00191 # image topics named:\n\
00192 #\n\
00193 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00194 # image - monochrome, distorted\n\
00195 # image_color - color, distorted\n\
00196 # image_rect - monochrome, rectified\n\
00197 # image_rect_color - color, rectified\n\
00198 #\n\
00199 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00200 # for producing the four processed image topics from image_raw and\n\
00201 # camera_info. The meaning of the camera parameters are described in\n\
00202 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00203 #\n\
00204 # The image_geometry package provides a user-friendly interface to\n\
00205 # common operations using this meta information. If you want to, e.g.,\n\
00206 # project a 3d point into image coordinates, we strongly recommend\n\
00207 # using image_geometry.\n\
00208 #\n\
00209 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00210 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00211 # indicates an uncalibrated camera.\n\
00212 \n\
00213 #######################################################################\n\
00214 # Image acquisition info #\n\
00215 #######################################################################\n\
00216 \n\
00217 # Time of image acquisition, camera coordinate frame ID\n\
00218 Header header # Header timestamp should be acquisition time of image\n\
00219 # Header frame_id should be optical frame of camera\n\
00220 # origin of frame should be optical center of camera\n\
00221 # +x should point to the right in the image\n\
00222 # +y should point down in the image\n\
00223 # +z should point into the plane of the image\n\
00224 \n\
00225 \n\
00226 #######################################################################\n\
00227 # Calibration Parameters #\n\
00228 #######################################################################\n\
00229 # These are fixed during camera calibration. Their values will be the #\n\
00230 # same in all messages until the camera is recalibrated. Note that #\n\
00231 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00232 # #\n\
00233 # The internal parameters can be used to warp a raw (distorted) image #\n\
00234 # to: #\n\
00235 # 1. An undistorted image (requires D and K) #\n\
00236 # 2. A rectified image (requires D, K, R) #\n\
00237 # The projection matrix P projects 3D points into the rectified image.#\n\
00238 #######################################################################\n\
00239 \n\
00240 # The image dimensions with which the camera was calibrated. Normally\n\
00241 # this will be the full camera resolution in pixels.\n\
00242 uint32 height\n\
00243 uint32 width\n\
00244 \n\
00245 # The distortion model used. Supported models are listed in\n\
00246 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00247 # simple model of radial and tangential distortion - is sufficent.\n\
00248 string distortion_model\n\
00249 \n\
00250 # The distortion parameters, size depending on the distortion model.\n\
00251 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00252 float64[] D\n\
00253 \n\
00254 # Intrinsic camera matrix for the raw (distorted) images.\n\
00255 # [fx 0 cx]\n\
00256 # K = [ 0 fy cy]\n\
00257 # [ 0 0 1]\n\
00258 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00259 # coordinates using the focal lengths (fx, fy) and principal point\n\
00260 # (cx, cy).\n\
00261 float64[9] K # 3x3 row-major matrix\n\
00262 \n\
00263 # Rectification matrix (stereo cameras only)\n\
00264 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00265 # stereo image plane so that epipolar lines in both stereo images are\n\
00266 # parallel.\n\
00267 float64[9] R # 3x3 row-major matrix\n\
00268 \n\
00269 # Projection/camera matrix\n\
00270 # [fx' 0 cx' Tx]\n\
00271 # P = [ 0 fy' cy' Ty]\n\
00272 # [ 0 0 1 0]\n\
00273 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00274 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00275 # is the normal camera intrinsic matrix for the rectified image.\n\
00276 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00277 # coordinates using the focal lengths (fx', fy') and principal point\n\
00278 # (cx', cy') - these may differ from the values in K.\n\
00279 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00280 # also have R = the identity and P[1:3,1:3] = K.\n\
00281 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00282 # position of the optical center of the second camera in the first\n\
00283 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00284 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00285 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00286 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00287 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00288 # the rectified image is given by:\n\
00289 # [u v w]' = P * [X Y Z 1]'\n\
00290 # x = u / w\n\
00291 # y = v / w\n\
00292 # This holds for both images of a stereo pair.\n\
00293 float64[12] P # 3x4 row-major matrix\n\
00294 \n\
00295 \n\
00296 #######################################################################\n\
00297 # Operational Parameters #\n\
00298 #######################################################################\n\
00299 # These define the image region actually captured by the camera #\n\
00300 # driver. Although they affect the geometry of the output image, they #\n\
00301 # may be changed freely without recalibrating the camera. #\n\
00302 #######################################################################\n\
00303 \n\
00304 # Binning refers here to any camera setting which combines rectangular\n\
00305 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00306 # resolution of the output image to\n\
00307 # (width / binning_x) x (height / binning_y).\n\
00308 # The default values binning_x = binning_y = 0 is considered the same\n\
00309 # as binning_x = binning_y = 1 (no subsampling).\n\
00310 uint32 binning_x\n\
00311 uint32 binning_y\n\
00312 \n\
00313 # Region of interest (subwindow of full camera resolution), given in\n\
00314 # full resolution (unbinned) image coordinates. A particular ROI\n\
00315 # always denotes the same window of pixels on the camera sensor,\n\
00316 # regardless of binning settings.\n\
00317 # The default setting of roi (all values 0) is considered the same as\n\
00318 # full resolution (roi.width = width, roi.height = height).\n\
00319 RegionOfInterest roi\n\
00320 \n\
00321 ================================================================================\n\
00322 MSG: sensor_msgs/RegionOfInterest\n\
00323 # This message is used to specify a region of interest within an image.\n\
00324 #\n\
00325 # When used to specify the ROI setting of the camera when the image was\n\
00326 # taken, the height and width fields should either match the height and\n\
00327 # width fields for the associated image; or height = width = 0\n\
00328 # indicates that the full resolution image was captured.\n\
00329 \n\
00330 uint32 x_offset # Leftmost pixel of the ROI\n\
00331 # (0 if the ROI includes the left edge of the image)\n\
00332 uint32 y_offset # Topmost pixel of the ROI\n\
00333 # (0 if the ROI includes the top edge of the image)\n\
00334 uint32 height # Height of ROI\n\
00335 uint32 width # Width of ROI\n\
00336 \n\
00337 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00338 # ROI in this message. Typically this should be False if the full image\n\
00339 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00340 # used).\n\
00341 bool do_rectify\n\
00342 \n\
00343 ================================================================================\n\
00344 MSG: object_recognition_gui/ModelHypothesisList\n\
00345 ModelHypothesis[] hypotheses\n\
00346 \n\
00347 #initial guess if this can be a correct recognition result at all\n\
00348 bool accept\n\
00349 ================================================================================\n\
00350 MSG: object_recognition_gui/ModelHypothesis\n\
00351 #describes a hypothesis about a recognized object (mesh+pose)\n\
00352 \n\
00353 arm_navigation_msgs/Shape mesh\n\
00354 geometry_msgs/PoseStamped pose\n\
00355 \n\
00356 ================================================================================\n\
00357 MSG: arm_navigation_msgs/Shape\n\
00358 byte SPHERE=0\n\
00359 byte BOX=1\n\
00360 byte CYLINDER=2\n\
00361 byte MESH=3\n\
00362 \n\
00363 byte type\n\
00364 \n\
00365 \n\
00366 #### define sphere, box, cylinder ####\n\
00367 # the origin of each shape is considered at the shape's center\n\
00368 \n\
00369 # for sphere\n\
00370 # radius := dimensions[0]\n\
00371 \n\
00372 # for cylinder\n\
00373 # radius := dimensions[0]\n\
00374 # length := dimensions[1]\n\
00375 # the length is along the Z axis\n\
00376 \n\
00377 # for box\n\
00378 # size_x := dimensions[0]\n\
00379 # size_y := dimensions[1]\n\
00380 # size_z := dimensions[2]\n\
00381 float64[] dimensions\n\
00382 \n\
00383 \n\
00384 #### define mesh ####\n\
00385 \n\
00386 # list of triangles; triangle k is defined by tre vertices located\n\
00387 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00388 int32[] triangles\n\
00389 geometry_msgs/Point[] vertices\n\
00390 \n\
00391 ================================================================================\n\
00392 MSG: geometry_msgs/Point\n\
00393 # This contains the position of a point in free space\n\
00394 float64 x\n\
00395 float64 y\n\
00396 float64 z\n\
00397 \n\
00398 ================================================================================\n\
00399 MSG: geometry_msgs/PoseStamped\n\
00400 # A Pose with reference coordinate frame and timestamp\n\
00401 Header header\n\
00402 Pose pose\n\
00403 \n\
00404 ================================================================================\n\
00405 MSG: geometry_msgs/Pose\n\
00406 # A representation of pose in free space, composed of postion and orientation. \n\
00407 Point position\n\
00408 Quaternion orientation\n\
00409 \n\
00410 ================================================================================\n\
00411 MSG: geometry_msgs/Quaternion\n\
00412 # This represents an orientation in free space in quaternion form.\n\
00413 \n\
00414 float64 x\n\
00415 float64 y\n\
00416 float64 z\n\
00417 float64 w\n\
00418 \n\
00419 ================================================================================\n\
00420 MSG: object_recognition_gui/ObjectRecognitionGuiActionResult\n\
00421 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00422 \n\
00423 Header header\n\
00424 actionlib_msgs/GoalStatus status\n\
00425 ObjectRecognitionGuiResult result\n\
00426 \n\
00427 ================================================================================\n\
00428 MSG: actionlib_msgs/GoalStatus\n\
00429 GoalID goal_id\n\
00430 uint8 status\n\
00431 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00432 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00433 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00434 # and has since completed its execution (Terminal State)\n\
00435 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00436 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00437 # to some failure (Terminal State)\n\
00438 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00439 # because the goal was unattainable or invalid (Terminal State)\n\
00440 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00441 # and has not yet completed execution\n\
00442 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00443 # but the action server has not yet confirmed that the goal is canceled\n\
00444 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00445 # and was successfully cancelled (Terminal State)\n\
00446 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00447 # sent over the wire by an action server\n\
00448 \n\
00449 #Allow for the user to associate a string with GoalStatus for debugging\n\
00450 string text\n\
00451 \n\
00452 \n\
00453 ================================================================================\n\
00454 MSG: object_recognition_gui/ObjectRecognitionGuiResult\n\
00455 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00456 \n\
00457 #the index of the model hypothesis that the user has selected for each cluster\n\
00458 #values below 0 mean 'reject all hypotheses'\n\
00459 int32[] selected_hypothesis_indices\n\
00460 \n\
00461 ================================================================================\n\
00462 MSG: object_recognition_gui/ObjectRecognitionGuiActionFeedback\n\
00463 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00464 \n\
00465 Header header\n\
00466 actionlib_msgs/GoalStatus status\n\
00467 ObjectRecognitionGuiFeedback feedback\n\
00468 \n\
00469 ================================================================================\n\
00470 MSG: object_recognition_gui/ObjectRecognitionGuiFeedback\n\
00471 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00472 \n\
00473 \n\
00474 ";
00475 }
00476
00477 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> &) { return value(); }
00478 };
00479
00480 }
00481 }
00482
00483 namespace ros
00484 {
00485 namespace serialization
00486 {
00487
00488 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> >
00489 {
00490 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00491 {
00492 stream.next(m.action_goal);
00493 stream.next(m.action_result);
00494 stream.next(m.action_feedback);
00495 }
00496
00497 ROS_DECLARE_ALLINONE_SERIALIZER;
00498 };
00499 }
00500 }
00501
00502 namespace ros
00503 {
00504 namespace message_operations
00505 {
00506
00507 template<class ContainerAllocator>
00508 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> >
00509 {
00510 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> & v)
00511 {
00512 s << indent << "action_goal: ";
00513 s << std::endl;
00514 Printer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
00515 s << indent << "action_result: ";
00516 s << std::endl;
00517 Printer< ::object_recognition_gui::ObjectRecognitionGuiActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
00518 s << indent << "action_feedback: ";
00519 s << std::endl;
00520 Printer< ::object_recognition_gui::ObjectRecognitionGuiActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
00521 }
00522 };
00523
00524
00525 }
00526 }
00527
00528 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTION_H
00529