Classes | Namespaces | Functions | Variables
SeedMea.py File Reference

Go to the source code of this file.

Classes

class  SeedMea.Channel
 Data structure for a MEA channel pad neurons: list of neurons within range of the pad total_weight: combined weights of all the neurons. More...
class  SeedMea.CloseNeuron
 Data structure for a neuron that is close to a channel pad. More...

Namespaces

namespace  SeedMea
 

This is a ROS node that is used by itself to generate network connectivity pickle files for the brian_recv.py and brian_to_csv.py nodes.


Functions

def SeedMea.countCells
def SeedMea.densityReap
def SeedMea.displace
def SeedMea.diSqPlasma
def SeedMea.gaussConnect
 Calculate the probability of a connection between two neurons, based on their distance apart.
def SeedMea.genPCell
 Takes a 2-D Numpy array and fill it in with a density map.
def SeedMea.grimReap
def SeedMea.nextPowTwo
 Find the next highest power of two, to get a shape that's good for plasma fractal generation.
def SeedMea.renderMap
 Use pygame to render an array.
def SeedMea.squarePlasma

Variables

int SeedMea.axon_growth = 220
 SeedMea.axon_max = dish_width
tuple SeedMea.Ce = Connection(P, P, 'ge')
int SeedMea.cell_density = 900
tuple SeedMea.cells_per_edge = int(dish_width/soma_dia)
tuple SeedMea.Ci = Connection(P, P, 'gi')
tuple SeedMea.close_neurons = Channel()
tuple SeedMea.conn_graph = nx.DiGraph()
list SeedMea.conn_list = []
int SeedMea.connectivity_rate = 55
int SeedMea.dendrite_max = 180
tuple SeedMea.density_map = np.zeros((edge_len, edge_len))
int SeedMea.dish_width = 2500
tuple SeedMea.dist = math.sqrt((neuron_x_loc - pad_x_loc)**2 + (neuron_y_loc - pad_y_loc)**2)
tuple SeedMea.distance = math.sqrt((from_neuron[0][0] - to_neuron[0][0])**2 + (from_neuron[0][1] - to_neuron[0][1])**2)
tuple SeedMea.edge_len = nextPowTwo(cells_per_edge)
string SeedMea.eqs
tuple SeedMea.excitory_count = int(neuron_count * 0.75)
tuple SeedMea.expected_cells = (dish_width/1000)
string SeedMea.file_date = "{0}-{1}-{2}-{3}:{4}:{5}"
 SeedMea.ignore_corners = True
 SeedMea.inhib_count = neuron_count-excitory_count
tuple SeedMea.inhib_neurons = random.sample(xrange(neuron_count), inhib_count)
tuple SeedMea.neuron_count = int(countCells(density_map))
int SeedMea.neuron_id = 0
list SeedMea.neuron_list = []
list SeedMea.neuron_x_loc = neuron[0]
list SeedMea.neuron_y_loc = neuron[0]
tuple SeedMea.now = datetime.datetime.now()
tuple SeedMea.P = NeuronGroup(neuron_count, eqs, threshold=-50*mV, reset=-60*mV)
int SeedMea.pad_cols = 8
int SeedMea.pad_dia = 30
dictionary SeedMea.pad_neuron_map = {}
int SeedMea.pad_rows = 8
int SeedMea.pad_spacing = 200
int SeedMea.pad_threshold = 40
 SeedMea.pad_x_loc = pad_x*pad_spacing
 SeedMea.pad_y_loc = pad_y*pad_spacing
int SeedMea.soma_dia = 30
int SeedMea.survival_rate = 65


neuro_recv
Author(s): Jonathan Hasenzahl
autogenerated on Sun Jan 5 2014 11:12:29