p224-64.c
Go to the documentation of this file.
1 /* Copyright (c) 2015, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16 //
17 // Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18 // and Adam Langley's public domain 64-bit C implementation of curve25519.
19 
20 #include <openssl/base.h>
21 
22 #include <openssl/bn.h>
23 #include <openssl/ec.h>
24 #include <openssl/err.h>
25 #include <openssl/mem.h>
26 
27 #include <string.h>
28 
29 #include "internal.h"
30 #include "../delocate.h"
31 #include "../../internal.h"
32 
33 
34 #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
35 
36 // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
37 // using 64-bit coefficients called 'limbs', and sometimes (for multiplication
38 // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
39 // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
40 // representation is an 'p224_felem'; a 7-p224_widelimb representation is a
41 // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
42 // don't always reduce the representations: we ensure that inputs to each
43 // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
44 // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
45 // are then again partially reduced to obtain an p224_felem satisfying a_i <
46 // 2^57. We only reduce to the unique minimal representation at the end of the
47 // computation.
48 
49 typedef uint64_t p224_limb;
50 typedef uint128_t p224_widelimb;
51 
52 typedef p224_limb p224_felem[4];
53 typedef p224_widelimb p224_widefelem[7];
54 
55 // Field element represented as a byte arrary. 28*8 = 224 bits is also the
56 // group order size for the elliptic curve, and we also use this type for
57 // scalars for point multiplication.
58 typedef uint8_t p224_felem_bytearray[28];
59 
60 // Precomputed multiples of the standard generator
61 // Points are given in coordinates (X, Y, Z) where Z normally is 1
62 // (0 for the point at infinity).
63 // For each field element, slice a_0 is word 0, etc.
64 //
65 // The table has 2 * 16 elements, starting with the following:
66 // index | bits | point
67 // ------+---------+------------------------------
68 // 0 | 0 0 0 0 | 0G
69 // 1 | 0 0 0 1 | 1G
70 // 2 | 0 0 1 0 | 2^56G
71 // 3 | 0 0 1 1 | (2^56 + 1)G
72 // 4 | 0 1 0 0 | 2^112G
73 // 5 | 0 1 0 1 | (2^112 + 1)G
74 // 6 | 0 1 1 0 | (2^112 + 2^56)G
75 // 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
76 // 8 | 1 0 0 0 | 2^168G
77 // 9 | 1 0 0 1 | (2^168 + 1)G
78 // 10 | 1 0 1 0 | (2^168 + 2^56)G
79 // 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
80 // 12 | 1 1 0 0 | (2^168 + 2^112)G
81 // 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
82 // 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
83 // 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
84 // followed by a copy of this with each element multiplied by 2^28.
85 //
86 // The reason for this is so that we can clock bits into four different
87 // locations when doing simple scalar multiplies against the base point,
88 // and then another four locations using the second 16 elements.
89 static const p224_felem g_p224_pre_comp[2][16][3] = {
90  {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
91  {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
92  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
93  {1, 0, 0, 0}},
94  {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
95  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
96  {1, 0, 0, 0}},
97  {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
98  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
99  {1, 0, 0, 0}},
100  {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
101  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
102  {1, 0, 0, 0}},
103  {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
104  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
105  {1, 0, 0, 0}},
106  {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
107  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
108  {1, 0, 0, 0}},
109  {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
110  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
111  {1, 0, 0, 0}},
112  {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
113  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
114  {1, 0, 0, 0}},
115  {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
116  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
117  {1, 0, 0, 0}},
118  {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
119  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
120  {1, 0, 0, 0}},
121  {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
122  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
123  {1, 0, 0, 0}},
124  {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
125  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
126  {1, 0, 0, 0}},
127  {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
128  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
129  {1, 0, 0, 0}},
130  {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
131  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
132  {1, 0, 0, 0}},
133  {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
134  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
135  {1, 0, 0, 0}}},
136  {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
137  {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
138  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
139  {1, 0, 0, 0}},
140  {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
141  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
142  {1, 0, 0, 0}},
143  {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
144  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
145  {1, 0, 0, 0}},
146  {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
147  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
148  {1, 0, 0, 0}},
149  {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
150  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
151  {1, 0, 0, 0}},
152  {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
153  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
154  {1, 0, 0, 0}},
155  {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
156  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
157  {1, 0, 0, 0}},
158  {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
159  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
160  {1, 0, 0, 0}},
161  {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
162  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
163  {1, 0, 0, 0}},
164  {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
165  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
166  {1, 0, 0, 0}},
167  {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
168  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
169  {1, 0, 0, 0}},
170  {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
171  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
172  {1, 0, 0, 0}},
173  {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
174  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
175  {1, 0, 0, 0}},
176  {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
177  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
178  {1, 0, 0, 0}},
179  {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
180  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
181  {1, 0, 0, 0}}}};
182 
183 static uint64_t p224_load_u64(const uint8_t in[8]) {
184  uint64_t ret;
185  OPENSSL_memcpy(&ret, in, sizeof(ret));
186  return ret;
187 }
188 
189 // Helper functions to convert field elements to/from internal representation
190 static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) {
191  out[0] = p224_load_u64(in) & 0x00ffffffffffffff;
192  out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff;
193  out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff;
194  out[3] = p224_load_u64(in + 20) >> 8;
195 }
196 
197 static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) {
198  for (size_t i = 0; i < 7; ++i) {
199  out[i] = in[0] >> (8 * i);
200  out[i + 7] = in[1] >> (8 * i);
201  out[i + 14] = in[2] >> (8 * i);
202  out[i + 21] = in[3] >> (8 * i);
203  }
204 }
205 
206 static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
207  p224_bin28_to_felem(out, in->bytes);
208 }
209 
210 // Requires 0 <= in < 2*p (always call p224_felem_reduce first)
211 static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
212  // Reduce to unique minimal representation.
213  static const int64_t two56 = ((p224_limb)1) << 56;
214  // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
215  // if in > p , reduce in = in - 2^224 + 2^96 - 1
216  int64_t tmp[4], a;
217  tmp[0] = in[0];
218  tmp[1] = in[1];
219  tmp[2] = in[2];
220  tmp[3] = in[3];
221  // Case 1: a = 1 iff in >= 2^224
222  a = (in[3] >> 56);
223  tmp[0] -= a;
224  tmp[1] += a << 40;
225  tmp[3] &= 0x00ffffffffffffff;
226  // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
227  // the lower part is non-zero
228  a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
229  (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
230  a &= 0x00ffffffffffffff;
231  // turn a into an all-one mask (if a = 0) or an all-zero mask
232  a = (a - 1) >> 63;
233  // subtract 2^224 - 2^96 + 1 if a is all-one
234  tmp[3] &= a ^ 0xffffffffffffffff;
235  tmp[2] &= a ^ 0xffffffffffffffff;
236  tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
237  tmp[0] -= 1 & a;
238 
239  // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
240  // be non-zero, so we only need one step
241  a = tmp[0] >> 63;
242  tmp[0] += two56 & a;
243  tmp[1] -= 1 & a;
244 
245  // carry 1 -> 2 -> 3
246  tmp[2] += tmp[1] >> 56;
247  tmp[1] &= 0x00ffffffffffffff;
248 
249  tmp[3] += tmp[2] >> 56;
250  tmp[2] &= 0x00ffffffffffffff;
251 
252  // Now 0 <= tmp < p
253  p224_felem tmp2;
254  tmp2[0] = tmp[0];
255  tmp2[1] = tmp[1];
256  tmp2[2] = tmp[2];
257  tmp2[3] = tmp[3];
258 
259  p224_felem_to_bin28(out->bytes, tmp2);
260  // 224 is not a multiple of 64, so zero the remaining bytes.
261  OPENSSL_memset(out->bytes + 28, 0, 32 - 28);
262 }
263 
264 
265 // Field operations, using the internal representation of field elements.
266 // NB! These operations are specific to our point multiplication and cannot be
267 // expected to be correct in general - e.g., multiplication with a large scalar
268 // will cause an overflow.
269 
270 static void p224_felem_assign(p224_felem out, const p224_felem in) {
271  out[0] = in[0];
272  out[1] = in[1];
273  out[2] = in[2];
274  out[3] = in[3];
275 }
276 
277 // Sum two field elements: out += in
278 static void p224_felem_sum(p224_felem out, const p224_felem in) {
279  out[0] += in[0];
280  out[1] += in[1];
281  out[2] += in[2];
282  out[3] += in[3];
283 }
284 
285 // Subtract field elements: out -= in
286 // Assumes in[i] < 2^57
287 static void p224_felem_diff(p224_felem out, const p224_felem in) {
288  static const p224_limb two58p2 =
289  (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
290  static const p224_limb two58m2 =
291  (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
292  static const p224_limb two58m42m2 =
293  (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
294 
295  // Add 0 mod 2^224-2^96+1 to ensure out > in
296  out[0] += two58p2;
297  out[1] += two58m42m2;
298  out[2] += two58m2;
299  out[3] += two58m2;
300 
301  out[0] -= in[0];
302  out[1] -= in[1];
303  out[2] -= in[2];
304  out[3] -= in[3];
305 }
306 
307 // Subtract in unreduced 128-bit mode: out -= in
308 // Assumes in[i] < 2^119
309 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
310  static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
311  static const p224_widelimb two120m64 =
312  (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
313  static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
314  (((p224_widelimb)1) << 104) -
315  (((p224_widelimb)1) << 64);
316 
317  // Add 0 mod 2^224-2^96+1 to ensure out > in
318  out[0] += two120;
319  out[1] += two120m64;
320  out[2] += two120m64;
321  out[3] += two120;
322  out[4] += two120m104m64;
323  out[5] += two120m64;
324  out[6] += two120m64;
325 
326  out[0] -= in[0];
327  out[1] -= in[1];
328  out[2] -= in[2];
329  out[3] -= in[3];
330  out[4] -= in[4];
331  out[5] -= in[5];
332  out[6] -= in[6];
333 }
334 
335 // Subtract in mixed mode: out128 -= in64
336 // in[i] < 2^63
337 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
338  static const p224_widelimb two64p8 =
339  (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
340  static const p224_widelimb two64m8 =
341  (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
342  static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
343  (((p224_widelimb)1) << 48) -
344  (((p224_widelimb)1) << 8);
345 
346  // Add 0 mod 2^224-2^96+1 to ensure out > in
347  out[0] += two64p8;
348  out[1] += two64m48m8;
349  out[2] += two64m8;
350  out[3] += two64m8;
351 
352  out[0] -= in[0];
353  out[1] -= in[1];
354  out[2] -= in[2];
355  out[3] -= in[3];
356 }
357 
358 // Multiply a field element by a scalar: out = out * scalar
359 // The scalars we actually use are small, so results fit without overflow
360 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
361  out[0] *= scalar;
362  out[1] *= scalar;
363  out[2] *= scalar;
364  out[3] *= scalar;
365 }
366 
367 // Multiply an unreduced field element by a scalar: out = out * scalar
368 // The scalars we actually use are small, so results fit without overflow
369 static void p224_widefelem_scalar(p224_widefelem out,
370  const p224_widelimb scalar) {
371  out[0] *= scalar;
372  out[1] *= scalar;
373  out[2] *= scalar;
374  out[3] *= scalar;
375  out[4] *= scalar;
376  out[5] *= scalar;
377  out[6] *= scalar;
378 }
379 
380 // Square a field element: out = in^2
381 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
382  p224_limb tmp0, tmp1, tmp2;
383  tmp0 = 2 * in[0];
384  tmp1 = 2 * in[1];
385  tmp2 = 2 * in[2];
386  out[0] = ((p224_widelimb)in[0]) * in[0];
387  out[1] = ((p224_widelimb)in[0]) * tmp1;
388  out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
389  out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
390  out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
391  out[5] = ((p224_widelimb)in[3]) * tmp2;
392  out[6] = ((p224_widelimb)in[3]) * in[3];
393 }
394 
395 // Multiply two field elements: out = in1 * in2
396 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
397  const p224_felem in2) {
398  out[0] = ((p224_widelimb)in1[0]) * in2[0];
399  out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
400  out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
401  ((p224_widelimb)in1[2]) * in2[0];
402  out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
403  ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
404  out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
405  ((p224_widelimb)in1[3]) * in2[1];
406  out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
407  out[6] = ((p224_widelimb)in1[3]) * in2[3];
408 }
409 
410 // Reduce seven 128-bit coefficients to four 64-bit coefficients.
411 // Requires in[i] < 2^126,
412 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
413 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
414  static const p224_widelimb two127p15 =
415  (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
416  static const p224_widelimb two127m71 =
417  (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
418  static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
419  (((p224_widelimb)1) << 71) -
420  (((p224_widelimb)1) << 55);
421  p224_widelimb output[5];
422 
423  // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
424  output[0] = in[0] + two127p15;
425  output[1] = in[1] + two127m71m55;
426  output[2] = in[2] + two127m71;
427  output[3] = in[3];
428  output[4] = in[4];
429 
430  // Eliminate in[4], in[5], in[6]
431  output[4] += in[6] >> 16;
432  output[3] += (in[6] & 0xffff) << 40;
433  output[2] -= in[6];
434 
435  output[3] += in[5] >> 16;
436  output[2] += (in[5] & 0xffff) << 40;
437  output[1] -= in[5];
438 
439  output[2] += output[4] >> 16;
440  output[1] += (output[4] & 0xffff) << 40;
441  output[0] -= output[4];
442 
443  // Carry 2 -> 3 -> 4
444  output[3] += output[2] >> 56;
445  output[2] &= 0x00ffffffffffffff;
446 
447  output[4] = output[3] >> 56;
448  output[3] &= 0x00ffffffffffffff;
449 
450  // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
451 
452  // Eliminate output[4]
453  output[2] += output[4] >> 16;
454  // output[2] < 2^56 + 2^56 = 2^57
455  output[1] += (output[4] & 0xffff) << 40;
456  output[0] -= output[4];
457 
458  // Carry 0 -> 1 -> 2 -> 3
459  output[1] += output[0] >> 56;
460  out[0] = output[0] & 0x00ffffffffffffff;
461 
462  output[2] += output[1] >> 56;
463  // output[2] < 2^57 + 2^72
464  out[1] = output[1] & 0x00ffffffffffffff;
465  output[3] += output[2] >> 56;
466  // output[3] <= 2^56 + 2^16
467  out[2] = output[2] & 0x00ffffffffffffff;
468 
469  // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
470  // out[3] <= 2^56 + 2^16 (due to final carry),
471  // so out < 2*p
472  out[3] = output[3];
473 }
474 
475 // Get negative value: out = -in
476 // Requires in[i] < 2^63,
477 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
478 static void p224_felem_neg(p224_felem out, const p224_felem in) {
479  p224_widefelem tmp = {0};
480  p224_felem_diff_128_64(tmp, in);
481  p224_felem_reduce(out, tmp);
482 }
483 
484 // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
485 // elements are reduced to in < 2^225, so we only need to check three cases: 0,
486 // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
487 static p224_limb p224_felem_is_zero(const p224_felem in) {
488  p224_limb zero = in[0] | in[1] | in[2] | in[3];
489  zero = (((int64_t)(zero)-1) >> 63) & 1;
490 
491  p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
492  (in[2] ^ 0x00ffffffffffffff) |
493  (in[3] ^ 0x00ffffffffffffff);
494  two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
495  p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
496  (in[2] ^ 0x00ffffffffffffff) |
497  (in[3] ^ 0x01ffffffffffffff);
498  two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
499  return (zero | two224m96p1 | two225m97p2);
500 }
501 
502 // Invert a field element
503 // Computation chain copied from djb's code
504 static void p224_felem_inv(p224_felem out, const p224_felem in) {
505  p224_felem ftmp, ftmp2, ftmp3, ftmp4;
506  p224_widefelem tmp;
507 
508  p224_felem_square(tmp, in);
509  p224_felem_reduce(ftmp, tmp); // 2
510  p224_felem_mul(tmp, in, ftmp);
511  p224_felem_reduce(ftmp, tmp); // 2^2 - 1
512  p224_felem_square(tmp, ftmp);
513  p224_felem_reduce(ftmp, tmp); // 2^3 - 2
514  p224_felem_mul(tmp, in, ftmp);
515  p224_felem_reduce(ftmp, tmp); // 2^3 - 1
516  p224_felem_square(tmp, ftmp);
517  p224_felem_reduce(ftmp2, tmp); // 2^4 - 2
518  p224_felem_square(tmp, ftmp2);
519  p224_felem_reduce(ftmp2, tmp); // 2^5 - 4
520  p224_felem_square(tmp, ftmp2);
521  p224_felem_reduce(ftmp2, tmp); // 2^6 - 8
522  p224_felem_mul(tmp, ftmp2, ftmp);
523  p224_felem_reduce(ftmp, tmp); // 2^6 - 1
524  p224_felem_square(tmp, ftmp);
525  p224_felem_reduce(ftmp2, tmp); // 2^7 - 2
526  for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6
527  p224_felem_square(tmp, ftmp2);
528  p224_felem_reduce(ftmp2, tmp);
529  }
530  p224_felem_mul(tmp, ftmp2, ftmp);
531  p224_felem_reduce(ftmp2, tmp); // 2^12 - 1
532  p224_felem_square(tmp, ftmp2);
533  p224_felem_reduce(ftmp3, tmp); // 2^13 - 2
534  for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12
535  p224_felem_square(tmp, ftmp3);
536  p224_felem_reduce(ftmp3, tmp);
537  }
538  p224_felem_mul(tmp, ftmp3, ftmp2);
539  p224_felem_reduce(ftmp2, tmp); // 2^24 - 1
540  p224_felem_square(tmp, ftmp2);
541  p224_felem_reduce(ftmp3, tmp); // 2^25 - 2
542  for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24
543  p224_felem_square(tmp, ftmp3);
544  p224_felem_reduce(ftmp3, tmp);
545  }
546  p224_felem_mul(tmp, ftmp3, ftmp2);
547  p224_felem_reduce(ftmp3, tmp); // 2^48 - 1
548  p224_felem_square(tmp, ftmp3);
549  p224_felem_reduce(ftmp4, tmp); // 2^49 - 2
550  for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48
551  p224_felem_square(tmp, ftmp4);
552  p224_felem_reduce(ftmp4, tmp);
553  }
554  p224_felem_mul(tmp, ftmp3, ftmp4);
555  p224_felem_reduce(ftmp3, tmp); // 2^96 - 1
556  p224_felem_square(tmp, ftmp3);
557  p224_felem_reduce(ftmp4, tmp); // 2^97 - 2
558  for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24
559  p224_felem_square(tmp, ftmp4);
560  p224_felem_reduce(ftmp4, tmp);
561  }
562  p224_felem_mul(tmp, ftmp2, ftmp4);
563  p224_felem_reduce(ftmp2, tmp); // 2^120 - 1
564  for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6
565  p224_felem_square(tmp, ftmp2);
566  p224_felem_reduce(ftmp2, tmp);
567  }
568  p224_felem_mul(tmp, ftmp2, ftmp);
569  p224_felem_reduce(ftmp, tmp); // 2^126 - 1
570  p224_felem_square(tmp, ftmp);
571  p224_felem_reduce(ftmp, tmp); // 2^127 - 2
572  p224_felem_mul(tmp, ftmp, in);
573  p224_felem_reduce(ftmp, tmp); // 2^127 - 1
574  for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97
575  p224_felem_square(tmp, ftmp);
576  p224_felem_reduce(ftmp, tmp);
577  }
578  p224_felem_mul(tmp, ftmp, ftmp3);
579  p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1
580 }
581 
582 // Copy in constant time:
583 // if icopy == 1, copy in to out,
584 // if icopy == 0, copy out to itself.
585 static void p224_copy_conditional(p224_felem out, const p224_felem in,
586  p224_limb icopy) {
587  // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
588  const p224_limb copy = -icopy;
589  for (size_t i = 0; i < 4; ++i) {
590  const p224_limb tmp = copy & (in[i] ^ out[i]);
591  out[i] ^= tmp;
592  }
593 }
594 
595 // ELLIPTIC CURVE POINT OPERATIONS
596 //
597 // Points are represented in Jacobian projective coordinates:
598 // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
599 // or to the point at infinity if Z == 0.
600 
601 // Double an elliptic curve point:
602 // (X', Y', Z') = 2 * (X, Y, Z), where
603 // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
604 // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
605 // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
606 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
607 // while x_out == y_in is not (maybe this works, but it's not tested).
608 static void p224_point_double(p224_felem x_out, p224_felem y_out,
609  p224_felem z_out, const p224_felem x_in,
610  const p224_felem y_in, const p224_felem z_in) {
611  p224_widefelem tmp, tmp2;
612  p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
613 
614  p224_felem_assign(ftmp, x_in);
615  p224_felem_assign(ftmp2, x_in);
616 
617  // delta = z^2
618  p224_felem_square(tmp, z_in);
619  p224_felem_reduce(delta, tmp);
620 
621  // gamma = y^2
622  p224_felem_square(tmp, y_in);
623  p224_felem_reduce(gamma, tmp);
624 
625  // beta = x*gamma
626  p224_felem_mul(tmp, x_in, gamma);
627  p224_felem_reduce(beta, tmp);
628 
629  // alpha = 3*(x-delta)*(x+delta)
630  p224_felem_diff(ftmp, delta);
631  // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
632  p224_felem_sum(ftmp2, delta);
633  // ftmp2[i] < 2^57 + 2^57 = 2^58
634  p224_felem_scalar(ftmp2, 3);
635  // ftmp2[i] < 3 * 2^58 < 2^60
636  p224_felem_mul(tmp, ftmp, ftmp2);
637  // tmp[i] < 2^60 * 2^59 * 4 = 2^121
638  p224_felem_reduce(alpha, tmp);
639 
640  // x' = alpha^2 - 8*beta
641  p224_felem_square(tmp, alpha);
642  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
643  p224_felem_assign(ftmp, beta);
644  p224_felem_scalar(ftmp, 8);
645  // ftmp[i] < 8 * 2^57 = 2^60
646  p224_felem_diff_128_64(tmp, ftmp);
647  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
648  p224_felem_reduce(x_out, tmp);
649 
650  // z' = (y + z)^2 - gamma - delta
651  p224_felem_sum(delta, gamma);
652  // delta[i] < 2^57 + 2^57 = 2^58
653  p224_felem_assign(ftmp, y_in);
654  p224_felem_sum(ftmp, z_in);
655  // ftmp[i] < 2^57 + 2^57 = 2^58
656  p224_felem_square(tmp, ftmp);
657  // tmp[i] < 4 * 2^58 * 2^58 = 2^118
658  p224_felem_diff_128_64(tmp, delta);
659  // tmp[i] < 2^118 + 2^64 + 8 < 2^119
660  p224_felem_reduce(z_out, tmp);
661 
662  // y' = alpha*(4*beta - x') - 8*gamma^2
663  p224_felem_scalar(beta, 4);
664  // beta[i] < 4 * 2^57 = 2^59
665  p224_felem_diff(beta, x_out);
666  // beta[i] < 2^59 + 2^58 + 2 < 2^60
667  p224_felem_mul(tmp, alpha, beta);
668  // tmp[i] < 4 * 2^57 * 2^60 = 2^119
669  p224_felem_square(tmp2, gamma);
670  // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
671  p224_widefelem_scalar(tmp2, 8);
672  // tmp2[i] < 8 * 2^116 = 2^119
673  p224_widefelem_diff(tmp, tmp2);
674  // tmp[i] < 2^119 + 2^120 < 2^121
675  p224_felem_reduce(y_out, tmp);
676 }
677 
678 // Add two elliptic curve points:
679 // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
680 // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
681 // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
682 // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
683 // X_1)^2 - X_3) -
684 // Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
685 // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
686 //
687 // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
688 
689 // This function is not entirely constant-time: it includes a branch for
690 // checking whether the two input points are equal, (while not equal to the
691 // point at infinity). This case never happens during single point
692 // multiplication, so there is no timing leak for ECDH or ECDSA signing.
693 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
694  const p224_felem x1, const p224_felem y1,
695  const p224_felem z1, const int mixed,
696  const p224_felem x2, const p224_felem y2,
697  const p224_felem z2) {
698  p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
699  p224_widefelem tmp, tmp2;
700  p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
701 
702  if (!mixed) {
703  // ftmp2 = z2^2
704  p224_felem_square(tmp, z2);
705  p224_felem_reduce(ftmp2, tmp);
706 
707  // ftmp4 = z2^3
708  p224_felem_mul(tmp, ftmp2, z2);
709  p224_felem_reduce(ftmp4, tmp);
710 
711  // ftmp4 = z2^3*y1
712  p224_felem_mul(tmp2, ftmp4, y1);
713  p224_felem_reduce(ftmp4, tmp2);
714 
715  // ftmp2 = z2^2*x1
716  p224_felem_mul(tmp2, ftmp2, x1);
717  p224_felem_reduce(ftmp2, tmp2);
718  } else {
719  // We'll assume z2 = 1 (special case z2 = 0 is handled later)
720 
721  // ftmp4 = z2^3*y1
722  p224_felem_assign(ftmp4, y1);
723 
724  // ftmp2 = z2^2*x1
725  p224_felem_assign(ftmp2, x1);
726  }
727 
728  // ftmp = z1^2
729  p224_felem_square(tmp, z1);
730  p224_felem_reduce(ftmp, tmp);
731 
732  // ftmp3 = z1^3
733  p224_felem_mul(tmp, ftmp, z1);
734  p224_felem_reduce(ftmp3, tmp);
735 
736  // tmp = z1^3*y2
737  p224_felem_mul(tmp, ftmp3, y2);
738  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
739 
740  // ftmp3 = z1^3*y2 - z2^3*y1
741  p224_felem_diff_128_64(tmp, ftmp4);
742  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
743  p224_felem_reduce(ftmp3, tmp);
744 
745  // tmp = z1^2*x2
746  p224_felem_mul(tmp, ftmp, x2);
747  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
748 
749  // ftmp = z1^2*x2 - z2^2*x1
750  p224_felem_diff_128_64(tmp, ftmp2);
751  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
752  p224_felem_reduce(ftmp, tmp);
753 
754  // the formulae are incorrect if the points are equal
755  // so we check for this and do doubling if this happens
756  x_equal = p224_felem_is_zero(ftmp);
757  y_equal = p224_felem_is_zero(ftmp3);
758  z1_is_zero = p224_felem_is_zero(z1);
759  z2_is_zero = p224_felem_is_zero(z2);
760  // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
761  p224_limb is_nontrivial_double =
762  x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
763  if (is_nontrivial_double) {
764  p224_point_double(x3, y3, z3, x1, y1, z1);
765  return;
766  }
767 
768  // ftmp5 = z1*z2
769  if (!mixed) {
770  p224_felem_mul(tmp, z1, z2);
771  p224_felem_reduce(ftmp5, tmp);
772  } else {
773  // special case z2 = 0 is handled later
774  p224_felem_assign(ftmp5, z1);
775  }
776 
777  // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
778  p224_felem_mul(tmp, ftmp, ftmp5);
779  p224_felem_reduce(z_out, tmp);
780 
781  // ftmp = (z1^2*x2 - z2^2*x1)^2
782  p224_felem_assign(ftmp5, ftmp);
783  p224_felem_square(tmp, ftmp);
784  p224_felem_reduce(ftmp, tmp);
785 
786  // ftmp5 = (z1^2*x2 - z2^2*x1)^3
787  p224_felem_mul(tmp, ftmp, ftmp5);
788  p224_felem_reduce(ftmp5, tmp);
789 
790  // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
791  p224_felem_mul(tmp, ftmp2, ftmp);
792  p224_felem_reduce(ftmp2, tmp);
793 
794  // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
795  p224_felem_mul(tmp, ftmp4, ftmp5);
796  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
797 
798  // tmp2 = (z1^3*y2 - z2^3*y1)^2
799  p224_felem_square(tmp2, ftmp3);
800  // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
801 
802  // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
803  p224_felem_diff_128_64(tmp2, ftmp5);
804  // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
805 
806  // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
807  p224_felem_assign(ftmp5, ftmp2);
808  p224_felem_scalar(ftmp5, 2);
809  // ftmp5[i] < 2 * 2^57 = 2^58
810 
811  /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
812  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
813  p224_felem_diff_128_64(tmp2, ftmp5);
814  // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
815  p224_felem_reduce(x_out, tmp2);
816 
817  // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
818  p224_felem_diff(ftmp2, x_out);
819  // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
820 
821  // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
822  p224_felem_mul(tmp2, ftmp3, ftmp2);
823  // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
824 
825  /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
826  z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
827  p224_widefelem_diff(tmp2, tmp);
828  // tmp2[i] < 2^118 + 2^120 < 2^121
829  p224_felem_reduce(y_out, tmp2);
830 
831  // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
832  // the point at infinity, so we need to check for this separately
833 
834  // if point 1 is at infinity, copy point 2 to output, and vice versa
835  p224_copy_conditional(x_out, x2, z1_is_zero);
836  p224_copy_conditional(x_out, x1, z2_is_zero);
837  p224_copy_conditional(y_out, y2, z1_is_zero);
838  p224_copy_conditional(y_out, y1, z2_is_zero);
839  p224_copy_conditional(z_out, z2, z1_is_zero);
840  p224_copy_conditional(z_out, z1, z2_is_zero);
841  p224_felem_assign(x3, x_out);
842  p224_felem_assign(y3, y_out);
843  p224_felem_assign(z3, z_out);
844 }
845 
846 // p224_select_point selects the |idx|th point from a precomputation table and
847 // copies it to out.
848 static void p224_select_point(const uint64_t idx, size_t size,
849  const p224_felem pre_comp[/*size*/][3],
850  p224_felem out[3]) {
851  p224_limb *outlimbs = &out[0][0];
852  OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
853 
854  for (size_t i = 0; i < size; i++) {
855  const p224_limb *inlimbs = &pre_comp[i][0][0];
856  uint64_t mask = i ^ idx;
857  mask |= mask >> 4;
858  mask |= mask >> 2;
859  mask |= mask >> 1;
860  mask &= 1;
861  mask--;
862  for (size_t j = 0; j < 4 * 3; j++) {
863  outlimbs[j] |= inlimbs[j] & mask;
864  }
865  }
866 }
867 
868 // p224_get_bit returns the |i|th bit in |in|
869 static crypto_word_t p224_get_bit(const p224_felem_bytearray in, size_t i) {
870  if (i >= 224) {
871  return 0;
872  }
873  return (in[i >> 3] >> (i & 7)) & 1;
874 }
875 
876 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns
877 // (X', Y') = (X/Z^2, Y/Z^3)
878 static int ec_GFp_nistp224_point_get_affine_coordinates(
879  const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x,
880  EC_FELEM *y) {
883  return 0;
884  }
885 
886  p224_felem z1, z2;
887  p224_widefelem tmp;
888  p224_generic_to_felem(z1, &point->Z);
889  p224_felem_inv(z2, z1);
890  p224_felem_square(tmp, z2);
891  p224_felem_reduce(z1, tmp);
892 
893  if (x != NULL) {
894  p224_felem x_in, x_out;
895  p224_generic_to_felem(x_in, &point->X);
896  p224_felem_mul(tmp, x_in, z1);
897  p224_felem_reduce(x_out, tmp);
898  p224_felem_to_generic(x, x_out);
899  }
900 
901  if (y != NULL) {
902  p224_felem y_in, y_out;
903  p224_generic_to_felem(y_in, &point->Y);
904  p224_felem_mul(tmp, z1, z2);
905  p224_felem_reduce(z1, tmp);
906  p224_felem_mul(tmp, y_in, z1);
907  p224_felem_reduce(y_out, tmp);
908  p224_felem_to_generic(y, y_out);
909  }
910 
911  return 1;
912 }
913 
914 static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_RAW_POINT *r,
915  const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
916  p224_felem x1, y1, z1, x2, y2, z2;
917  p224_generic_to_felem(x1, &a->X);
918  p224_generic_to_felem(y1, &a->Y);
919  p224_generic_to_felem(z1, &a->Z);
920  p224_generic_to_felem(x2, &b->X);
921  p224_generic_to_felem(y2, &b->Y);
922  p224_generic_to_felem(z2, &b->Z);
923  p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
924  // The outputs are already reduced, but still need to be contracted.
925  p224_felem_to_generic(&r->X, x1);
926  p224_felem_to_generic(&r->Y, y1);
927  p224_felem_to_generic(&r->Z, z1);
928 }
929 
930 static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
931  const EC_RAW_POINT *a) {
932  p224_felem x, y, z;
933  p224_generic_to_felem(x, &a->X);
934  p224_generic_to_felem(y, &a->Y);
935  p224_generic_to_felem(z, &a->Z);
936  p224_point_double(x, y, z, x, y, z);
937  // The outputs are already reduced, but still need to be contracted.
938  p224_felem_to_generic(&r->X, x);
939  p224_felem_to_generic(&r->Y, y);
940  p224_felem_to_generic(&r->Z, z);
941 }
942 
943 static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
944  const EC_RAW_POINT *p) {
945  OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
946 
947  p224_generic_to_felem(out[1][0], &p->X);
948  p224_generic_to_felem(out[1][1], &p->Y);
949  p224_generic_to_felem(out[1][2], &p->Z);
950 
951  for (size_t j = 2; j <= 16; ++j) {
952  if (j & 1) {
953  p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
954  out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
955  } else {
956  p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
957  out[j / 2][1], out[j / 2][2]);
958  }
959  }
960 }
961 
962 static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
963  const EC_RAW_POINT *p,
964  const EC_SCALAR *scalar) {
965  p224_felem p_pre_comp[17][3];
966  ec_GFp_nistp224_make_precomp(p_pre_comp, p);
967 
968  // Set nq to the point at infinity.
969  p224_felem nq[3], tmp[4];
970  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
971 
972  int skip = 1; // Save two point operations in the first round.
973  for (size_t i = 220; i < 221; i--) {
974  if (!skip) {
975  p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
976  }
977 
978  // Add every 5 doublings.
979  if (i % 5 == 0) {
980  crypto_word_t bits = p224_get_bit(scalar->bytes, i + 4) << 5;
981  bits |= p224_get_bit(scalar->bytes, i + 3) << 4;
982  bits |= p224_get_bit(scalar->bytes, i + 2) << 3;
983  bits |= p224_get_bit(scalar->bytes, i + 1) << 2;
984  bits |= p224_get_bit(scalar->bytes, i) << 1;
985  bits |= p224_get_bit(scalar->bytes, i - 1);
986  crypto_word_t sign, digit;
987  ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
988 
989  // Select the point to add or subtract.
990  p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
991  p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point
992  p224_copy_conditional(tmp[1], tmp[3], sign);
993 
994  if (!skip) {
995  p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
996  tmp[0], tmp[1], tmp[2]);
997  } else {
998  OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
999  skip = 0;
1000  }
1001  }
1002  }
1003 
1004  // Reduce the output to its unique minimal representation.
1005  p224_felem_to_generic(&r->X, nq[0]);
1006  p224_felem_to_generic(&r->Y, nq[1]);
1007  p224_felem_to_generic(&r->Z, nq[2]);
1008 }
1009 
1010 static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
1011  EC_RAW_POINT *r,
1012  const EC_SCALAR *scalar) {
1013  // Set nq to the point at infinity.
1014  p224_felem nq[3], tmp[3];
1015  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1016 
1017  int skip = 1; // Save two point operations in the first round.
1018  for (size_t i = 27; i < 28; i--) {
1019  // double
1020  if (!skip) {
1021  p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1022  }
1023 
1024  // First, look 28 bits upwards.
1025  crypto_word_t bits = p224_get_bit(scalar->bytes, i + 196) << 3;
1026  bits |= p224_get_bit(scalar->bytes, i + 140) << 2;
1027  bits |= p224_get_bit(scalar->bytes, i + 84) << 1;
1028  bits |= p224_get_bit(scalar->bytes, i + 28);
1029  // Select the point to add, in constant time.
1030  p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
1031 
1032  if (!skip) {
1033  p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1034  tmp[0], tmp[1], tmp[2]);
1035  } else {
1036  OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1037  skip = 0;
1038  }
1039 
1040  // Second, look at the current position/
1041  bits = p224_get_bit(scalar->bytes, i + 168) << 3;
1042  bits |= p224_get_bit(scalar->bytes, i + 112) << 2;
1043  bits |= p224_get_bit(scalar->bytes, i + 56) << 1;
1044  bits |= p224_get_bit(scalar->bytes, i);
1045  // Select the point to add, in constant time.
1046  p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
1047  p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1048  tmp[0], tmp[1], tmp[2]);
1049  }
1050 
1051  // Reduce the output to its unique minimal representation.
1052  p224_felem_to_generic(&r->X, nq[0]);
1053  p224_felem_to_generic(&r->Y, nq[1]);
1054  p224_felem_to_generic(&r->Z, nq[2]);
1055 }
1056 
1057 static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
1058  EC_RAW_POINT *r,
1059  const EC_SCALAR *g_scalar,
1060  const EC_RAW_POINT *p,
1061  const EC_SCALAR *p_scalar) {
1062  // TODO(davidben): If P-224 ECDSA verify performance ever matters, using
1063  // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
1064  p224_felem p_pre_comp[17][3];
1065  ec_GFp_nistp224_make_precomp(p_pre_comp, p);
1066 
1067  // Set nq to the point at infinity.
1068  p224_felem nq[3], tmp[3];
1069  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1070 
1071  // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
1072  // the generator (two in each of the last 28 rounds) and additions of p (every
1073  // 5th round).
1074  int skip = 1; // Save two point operations in the first round.
1075  for (size_t i = 220; i < 221; i--) {
1076  if (!skip) {
1077  p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1078  }
1079 
1080  // Add multiples of the generator.
1081  if (i <= 27) {
1082  // First, look 28 bits upwards.
1083  crypto_word_t bits = p224_get_bit(g_scalar->bytes, i + 196) << 3;
1084  bits |= p224_get_bit(g_scalar->bytes, i + 140) << 2;
1085  bits |= p224_get_bit(g_scalar->bytes, i + 84) << 1;
1086  bits |= p224_get_bit(g_scalar->bytes, i + 28);
1087 
1088  size_t index = (size_t)bits;
1089  p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1090  g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
1091  g_p224_pre_comp[1][index][2]);
1092  assert(!skip);
1093 
1094  // Second, look at the current position.
1095  bits = p224_get_bit(g_scalar->bytes, i + 168) << 3;
1096  bits |= p224_get_bit(g_scalar->bytes, i + 112) << 2;
1097  bits |= p224_get_bit(g_scalar->bytes, i + 56) << 1;
1098  bits |= p224_get_bit(g_scalar->bytes, i);
1099  index = (size_t)bits;
1100  p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1101  g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
1102  g_p224_pre_comp[0][index][2]);
1103  }
1104 
1105  // Incorporate |p_scalar| every 5 doublings.
1106  if (i % 5 == 0) {
1107  crypto_word_t bits = p224_get_bit(p_scalar->bytes, i + 4) << 5;
1108  bits |= p224_get_bit(p_scalar->bytes, i + 3) << 4;
1109  bits |= p224_get_bit(p_scalar->bytes, i + 2) << 3;
1110  bits |= p224_get_bit(p_scalar->bytes, i + 1) << 2;
1111  bits |= p224_get_bit(p_scalar->bytes, i) << 1;
1112  bits |= p224_get_bit(p_scalar->bytes, i - 1);
1113  crypto_word_t sign, digit;
1114  ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1115 
1116  // Select the point to add or subtract.
1117  OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
1118  if (sign) {
1119  p224_felem_neg(tmp[1], tmp[1]); // (X, -Y, Z) is the negative point
1120  }
1121 
1122  if (!skip) {
1123  p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1124  tmp[0], tmp[1], tmp[2]);
1125  } else {
1126  OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1127  skip = 0;
1128  }
1129  }
1130  }
1131 
1132  // Reduce the output to its unique minimal representation.
1133  p224_felem_to_generic(&r->X, nq[0]);
1134  p224_felem_to_generic(&r->Y, nq[1]);
1135  p224_felem_to_generic(&r->Z, nq[2]);
1136 }
1137 
1138 static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
1139  const EC_FELEM *a, const EC_FELEM *b) {
1140  p224_felem felem1, felem2;
1141  p224_widefelem wide;
1142  p224_generic_to_felem(felem1, a);
1143  p224_generic_to_felem(felem2, b);
1144  p224_felem_mul(wide, felem1, felem2);
1145  p224_felem_reduce(felem1, wide);
1146  p224_felem_to_generic(r, felem1);
1147 }
1148 
1149 static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
1150  const EC_FELEM *a) {
1151  p224_felem felem;
1152  p224_generic_to_felem(felem, a);
1153  p224_widefelem wide;
1154  p224_felem_square(wide, felem);
1155  p224_felem_reduce(felem, wide);
1156  p224_felem_to_generic(r, felem);
1157 }
1158 
1160  out->group_init = ec_GFp_simple_group_init;
1161  out->group_finish = ec_GFp_simple_group_finish;
1162  out->group_set_curve = ec_GFp_simple_group_set_curve;
1163  out->point_get_affine_coordinates =
1164  ec_GFp_nistp224_point_get_affine_coordinates;
1165  out->add = ec_GFp_nistp224_add;
1166  out->dbl = ec_GFp_nistp224_dbl;
1167  out->mul = ec_GFp_nistp224_point_mul;
1168  out->mul_base = ec_GFp_nistp224_point_mul_base;
1169  out->mul_public = ec_GFp_nistp224_point_mul_public;
1170  out->felem_mul = ec_GFp_nistp224_felem_mul;
1171  out->felem_sqr = ec_GFp_nistp224_felem_sqr;
1172  out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
1173  out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
1174  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1175  out->scalar_to_montgomery_inv_vartime =
1177  out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
1178 }
1179 
1180 #endif // BORINGSSL_HAS_UINT128 && !SMALL
EC_SCALAR::bytes
uint8_t bytes[EC_MAX_BYTES]
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:105
bn.h
ec_GFp_nistp_recode_scalar_bits
#define ec_GFp_nistp_recode_scalar_bits
Definition: boringssl_prefix_symbols.h:3073
ec_GFp_simple_group_set_curve
#define ec_GFp_simple_group_set_curve
Definition: boringssl_prefix_symbols.h:3080
gen_build_yaml.out
dictionary out
Definition: src/benchmark/gen_build_yaml.py:24
ec_GFp_simple_felem_to_bytes
#define ec_GFp_simple_felem_to_bytes
Definition: boringssl_prefix_symbols.h:3076
ec_method_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:463
absl::str_format_internal::LengthMod::j
@ j
ec_GFp_simple_is_at_infinity
#define ec_GFp_simple_is_at_infinity
Definition: boringssl_prefix_symbols.h:3082
mkowners.skip
bool skip
Definition: mkowners.py:224
scalar
Definition: spake25519.c:317
y
const double y
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3611
OPENSSL_PUT_ERROR
#define OPENSSL_PUT_ERROR(library, reason)
Definition: err.h:423
string.h
copy
static int copy(grpc_slice_buffer *input, grpc_slice_buffer *output)
Definition: message_compress.cc:145
EC_GFp_nistp224_method
const EC_METHOD * EC_GFp_nistp224_method(void)
grpc.beta._metadata.beta
def beta(metadata)
Definition: src/python/grpcio/grpc/beta/_metadata.py:39
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
xds_manager.p
p
Definition: xds_manager.py:60
z
Uncopyable z
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3612
uint8_t
unsigned char uint8_t
Definition: stdint-msvc2008.h:78
OPENSSL_memset
static void * OPENSSL_memset(void *dst, int c, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:835
EC_RAW_POINT
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:260
base.h
ec_GFp_simple_group_init
#define ec_GFp_simple_group_init
Definition: boringssl_prefix_symbols.h:3079
in
const char * in
Definition: third_party/abseil-cpp/absl/strings/internal/str_format/parser_test.cc:391
int64_t
signed __int64 int64_t
Definition: stdint-msvc2008.h:89
gmock_output_test.output
output
Definition: bloaty/third_party/googletest/googlemock/test/gmock_output_test.py:175
ec_GFp_simple_group_finish
#define ec_GFp_simple_group_finish
Definition: boringssl_prefix_symbols.h:3077
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
OPENSSL_memcpy
static void * OPENSSL_memcpy(void *dst, const void *src, size_t n)
Definition: third_party/boringssl-with-bazel/src/crypto/internal.h:819
bits
OPENSSL_EXPORT ASN1_BIT_STRING * bits
Definition: x509v3.h:482
err.h
ec_simple_scalar_inv0_montgomery
#define ec_simple_scalar_inv0_montgomery
Definition: boringssl_prefix_symbols.h:3141
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
EC_FELEM
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:195
setup.idx
idx
Definition: third_party/bloaty/third_party/capstone/bindings/python/setup.py:197
point
Definition: bloaty/third_party/zlib/examples/zran.c:67
internal.h
upload.group
group
Definition: bloaty/third_party/googletest/googlemock/scripts/upload.py:397
index
int index
Definition: bloaty/third_party/protobuf/php/ext/google/protobuf/protobuf.h:1184
ret
UniquePtr< SSL_SESSION > ret
Definition: ssl_x509.cc:1029
ec_group_st
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:573
fix_build_deps.r
r
Definition: fix_build_deps.py:491
ec_simple_scalar_to_montgomery_inv_vartime
#define ec_simple_scalar_to_montgomery_inv_vartime
Definition: boringssl_prefix_symbols.h:3142
scalar::bytes
uint8_t bytes[32]
Definition: spake25519.c:318
EC_SCALAR
Definition: third_party/boringssl-with-bazel/src/crypto/fipsmodule/ec/internal.h:103
EC_R_POINT_AT_INFINITY
#define EC_R_POINT_AT_INFINITY
Definition: ec.h:426
mem.h
autogen_x86imm.tmp
tmp
Definition: autogen_x86imm.py:12
size
voidpf void uLong size
Definition: bloaty/third_party/zlib/contrib/minizip/ioapi.h:136
ec_GFp_simple_cmp_x_coordinate
#define ec_GFp_simple_cmp_x_coordinate
Definition: boringssl_prefix_symbols.h:3074
DEFINE_METHOD_FUNCTION
#define DEFINE_METHOD_FUNCTION(type, name)
Definition: delocate.h:84
ec.h
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
ec_GFp_simple_felem_from_bytes
#define ec_GFp_simple_felem_from_bytes
Definition: boringssl_prefix_symbols.h:3075


grpc
Author(s):
autogenerated on Fri May 16 2025 02:59:36