5 from pypointmatcher 
import pointmatcher 
as pm
 
    9 Generator = pm.PointCloudGenerator
 
   14 output_base_directory = 
"tests/generator/" 
   17 number_of_points = 10000
 
   25     ref = 
DP(DP.load(
'../data/car_cloud400.csv'))
 
   26     data = 
DP(DP.load(
'../data/car_cloud401.csv'))
 
   28     translation = np.array([[0], [0], [0]])
 
   29     rotation = np.array([1, 0, 0, 0], dtype=np.float32)
 
   31     raise Exception(
"The Point Cloud Generator only supports 3D shapes")
 
   33 box = Generator.generateUniformlySampledBox(1.0, 2.0, 3.0, number_of_points, translation, rotation)
 
   34 circle = Generator.generateUniformlySampledCircle(1.0, number_of_points, translation, rotation)
 
   35 cylinder = Generator.generateUniformlySampledCylinder(1.0, 2.0, number_of_points, translation, rotation)
 
   36 plane = Generator.generateUniformlySampledPlane(np.array([1.0, 2.0, 3.0]), number_of_points, translation, rotation)
 
   37 sphere = Generator.generateUniformlySampledSphere(1.0, number_of_points, translation, rotation)
 
   41 if not os.path.exists(output_base_directory):
 
   42     os.makedirs(output_base_directory)
 
   44 box.save(f
"{output_base_directory}box.vtk")
 
   45 circle.save(f
"{output_base_directory}circle.vtk")
 
   46 cylinder.save(f
"{output_base_directory}cylinder.vtk")
 
   47 plane.save(f
"{output_base_directory}plane.vtk")
 
   48 sphere.save(f
"{output_base_directory}sphere.vtk")
 
   50 print(f
"Saved generated shapes into {output_base_directory}")