7 import matplotlib.pyplot 
as plt
 
    8 from sklearn 
import linear_model, datasets
 
   10 if __name__ == 
"__main__":
 
   11     csv_files = sys.argv[1:]
 
   15     for csv_file 
in csv_files:
 
   16         with open(csv_file) 
as f:
 
   17             reader = csv.reader(f)
 
   18             (true_depths, observed_depths) = list(zip(*[(float(row[0]), float(row[1])) 
for row 
in reader]))
 
   19             errs = [a - b 
for (a, b) 
in zip(true_depths, observed_depths)]
 
   20             true_mean = np.mean(true_depths)
 
   21             observed_mean = np.mean(observed_depths)
 
   22             err_mean = np.mean(errs, axis=0)
 
   23             err_stddev = np.std(errs, axis=0)
 
   25             ys.append(observed_mean)
 
   30     model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression(), min_samples=2,
 
   31                                                 residual_threshold=0.1)
 
   32     X = np.array(xs).reshape((len(xs), 1))
 
   34     model_ransac.fit(X, Y)
 
   35     line_y_ransac = model_ransac.predict(X)
 
   36     plt.plot(X, line_y_ransac, 
"r--",
 
   37              label=
"{0} x + {1}".format(model_ransac.estimator_.coef_[0][0],
 
   38                                         model_ransac.estimator_.intercept_[0]))
 
   39     print(
"{0} x + {1}".format(model_ransac.estimator_.coef_[0][0],
 
   40                                model_ransac.estimator_.intercept_[0]))
 
   42     plt.xlabel(
"Distance [m]")
 
   43     plt.ylabel(
"Standard Deviation [m]")