|
| template<typename DerTypeA , typename DerTypeB > |
| const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > | atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
| |
| template<typename DerTypeA , typename DerTypeB > |
| const AutoDiffScalar< SparseVector< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar > > | atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
| |
| template<typename DerType > |
| const AutoDiffScalar< DerType > & | conj (const AutoDiffScalar< DerType > &x) |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2 |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1 - numext::abs2(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sinh, using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() *(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos |
| |
| | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin |
| |
| void | fromMsg (const geometry_msgs::Point &msg, Eigen::Vector3d &out) |
| |
| void | fromMsg (const geometry_msgs::Pose &msg, Eigen::Affine3d &out) |
| |
| void | fromMsg (const geometry_msgs::Pose &msg, Eigen::Isometry3d &out) |
| |
| void | fromMsg (const geometry_msgs::Quaternion &msg, Eigen::Quaterniond &out) |
| |
| void | fromMsg (const geometry_msgs::Twist &msg, Eigen::Matrix< double, 6, 1 > &out) |
| |
| Eigen::VectorXd | IdentityTransform () |
| |
| template<typename DerType > |
| DerType::Scalar | imag (const AutoDiffScalar< DerType > &) |
| |
| template<typename NewDerType > |
| AutoDiffScalar< NewDerType > | MakeAutoDiffScalar (const typename NewDerType::Scalar &value, const NewDerType &der) |
| |
| template<typename Scalar , typename... Dims> |
| Eigen::Tensor< Scalar, sizeof...(Dims)> | MatrixToTensor (const MatrixType< Scalar > &matrix, Dims... dims) |
| |
| template<typename DerType > |
| const AutoDiffScalar< DerType > & | real (const AutoDiffScalar< DerType > &x) |
| |
| | return (x > y ? ADS(x) :ADS(y)) |
| |
| | return (x >=y ? ADS(x) :ADS(y)) |
| |
| | return (x< y ? ADS(x) :ADS(y)) |
| |
| | return (x<=y ? ADS(x) :ADS(y)) |
| |
| template<typename Scalar , int rank, typename sizeType > |
| MatrixType< Scalar > | TensorToMatrix (const Eigen::Tensor< Scalar, rank > &tensor, const sizeType rows, const sizeType cols) |
| |
| geometry_msgs::Pose | toMsg (const Eigen::Affine3d &in) |
| |
| geometry_msgs::Pose | toMsg (const Eigen::Isometry3d &in) |
| |
| geometry_msgs::Twist | toMsg (const Eigen::Matrix< double, 6, 1 > &in) |
| |
| geometry_msgs::Quaternion | toMsg (const Eigen::Quaterniond &in) |
| |
| geometry_msgs::Point | toMsg (const Eigen::Vector3d &in) |
| |
| Eigen::VectorXd | VectorTransform (double px=0.0, double py=0.0, double pz=0.0, double qx=0.0, double qy=0.0, double qz=0.0, double qw=1.0) |
| |