TensorDeviceCuda.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H)
11 #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
12 
13 namespace Eigen {
14 
15 static const int kCudaScratchSize = 1024;
16 
17 // This defines an interface that GPUDevice can take to use
18 // CUDA streams underneath.
19 class StreamInterface {
20  public:
21  virtual ~StreamInterface() {}
22 
23  virtual const cudaStream_t& stream() const = 0;
24  virtual const cudaDeviceProp& deviceProperties() const = 0;
25 
26  // Allocate memory on the actual device where the computation will run
27  virtual void* allocate(size_t num_bytes) const = 0;
28  virtual void deallocate(void* buffer) const = 0;
29 
30  // Return a scratchpad buffer of size 1k
31  virtual void* scratchpad() const = 0;
32 
33  // Return a semaphore. The semaphore is initially initialized to 0, and
34  // each kernel using it is responsible for resetting to 0 upon completion
35  // to maintain the invariant that the semaphore is always equal to 0 upon
36  // each kernel start.
37  virtual unsigned int* semaphore() const = 0;
38 };
39 
40 static cudaDeviceProp* m_deviceProperties;
41 static bool m_devicePropInitialized = false;
42 
43 static void initializeDeviceProp() {
44  if (!m_devicePropInitialized) {
45  // Attempts to ensure proper behavior in the case of multiple threads
46  // calling this function simultaneously. This would be trivial to
47  // implement if we could use std::mutex, but unfortunately mutex don't
48  // compile with nvcc, so we resort to atomics and thread fences instead.
49  // Note that if the caller uses a compiler that doesn't support c++11 we
50  // can't ensure that the initialization is thread safe.
51 #if __cplusplus >= 201103L
52  static std::atomic<bool> first(true);
53  if (first.exchange(false)) {
54 #else
55  static bool first = true;
56  if (first) {
57  first = false;
58 #endif
59  // We're the first thread to reach this point.
60  int num_devices;
61  cudaError_t status = cudaGetDeviceCount(&num_devices);
62  if (status != cudaSuccess) {
63  std::cerr << "Failed to get the number of CUDA devices: "
64  << cudaGetErrorString(status)
65  << std::endl;
66  assert(status == cudaSuccess);
67  }
68  m_deviceProperties = new cudaDeviceProp[num_devices];
69  for (int i = 0; i < num_devices; ++i) {
70  status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
71  if (status != cudaSuccess) {
72  std::cerr << "Failed to initialize CUDA device #"
73  << i
74  << ": "
75  << cudaGetErrorString(status)
76  << std::endl;
77  assert(status == cudaSuccess);
78  }
79  }
80 
81 #if __cplusplus >= 201103L
82  std::atomic_thread_fence(std::memory_order_release);
83 #endif
84  m_devicePropInitialized = true;
85  } else {
86  // Wait for the other thread to inititialize the properties.
87  while (!m_devicePropInitialized) {
88 #if __cplusplus >= 201103L
89  std::atomic_thread_fence(std::memory_order_acquire);
90 #endif
91  sleep(1);
92  }
93  }
94  }
95 }
96 
97 static const cudaStream_t default_stream = cudaStreamDefault;
98 
99 class CudaStreamDevice : public StreamInterface {
100  public:
101  // Use the default stream on the current device
102  CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
103  cudaGetDevice(&device_);
104  initializeDeviceProp();
105  }
106  // Use the default stream on the specified device
107  CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {
108  initializeDeviceProp();
109  }
110  // Use the specified stream. Note that it's the
111  // caller responsibility to ensure that the stream can run on
112  // the specified device. If no device is specified the code
113  // assumes that the stream is associated to the current gpu device.
114  CudaStreamDevice(const cudaStream_t* stream, int device = -1)
115  : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) {
116  if (device < 0) {
117  cudaGetDevice(&device_);
118  } else {
119  int num_devices;
120  cudaError_t err = cudaGetDeviceCount(&num_devices);
122  assert(err == cudaSuccess);
123  assert(device < num_devices);
124  device_ = device;
125  }
126  initializeDeviceProp();
127  }
128 
129  virtual ~CudaStreamDevice() {
130  if (scratch_) {
131  deallocate(scratch_);
132  }
133  }
134 
135  const cudaStream_t& stream() const { return *stream_; }
136  const cudaDeviceProp& deviceProperties() const {
137  return m_deviceProperties[device_];
138  }
139  virtual void* allocate(size_t num_bytes) const {
140  cudaError_t err = cudaSetDevice(device_);
142  assert(err == cudaSuccess);
143  void* result;
144  err = cudaMalloc(&result, num_bytes);
145  assert(err == cudaSuccess);
146  assert(result != NULL);
147  return result;
148  }
149  virtual void deallocate(void* buffer) const {
150  cudaError_t err = cudaSetDevice(device_);
152  assert(err == cudaSuccess);
153  assert(buffer != NULL);
154  err = cudaFree(buffer);
155  assert(err == cudaSuccess);
156  }
157 
158  virtual void* scratchpad() const {
159  if (scratch_ == NULL) {
160  scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int));
161  }
162  return scratch_;
163  }
164 
165  virtual unsigned int* semaphore() const {
166  if (semaphore_ == NULL) {
167  char* scratch = static_cast<char*>(scratchpad()) + kCudaScratchSize;
168  semaphore_ = reinterpret_cast<unsigned int*>(scratch);
169  cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
171  assert(err == cudaSuccess);
172  }
173  return semaphore_;
174  }
175 
176  private:
177  const cudaStream_t* stream_;
178  int device_;
179  mutable void* scratch_;
180  mutable unsigned int* semaphore_;
181 };
182 
183 struct GpuDevice {
184  // The StreamInterface is not owned: the caller is
185  // responsible for its initialization and eventual destruction.
186  explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) {
187  eigen_assert(stream);
188  }
189  explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) {
190  eigen_assert(stream);
191  }
192  // TODO(bsteiner): This is an internal API, we should not expose it.
193  EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
194  return stream_->stream();
195  }
196 
197  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
198  return stream_->allocate(num_bytes);
199  }
200 
201  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
202  stream_->deallocate(buffer);
203  }
204 
205  EIGEN_STRONG_INLINE void* scratchpad() const {
206  return stream_->scratchpad();
207  }
208 
209  EIGEN_STRONG_INLINE unsigned int* semaphore() const {
210  return stream_->semaphore();
211  }
212 
213  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
214 #ifndef __CUDA_ARCH__
215  cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
216  stream_->stream());
218  assert(err == cudaSuccess);
219 #else
220  eigen_assert(false && "The default device should be used instead to generate kernel code");
221 #endif
222  }
223 
224  EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
225  cudaError_t err =
226  cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
228  assert(err == cudaSuccess);
229  }
230 
231  EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
232  cudaError_t err =
233  cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
235  assert(err == cudaSuccess);
236  }
237 
238  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
239 #ifndef __CUDA_ARCH__
240  cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
242  assert(err == cudaSuccess);
243 #else
244  eigen_assert(false && "The default device should be used instead to generate kernel code");
245 #endif
246  }
247 
248  EIGEN_STRONG_INLINE size_t numThreads() const {
249  // FIXME
250  return 32;
251  }
252 
253  EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
254  // FIXME
255  return 48*1024;
256  }
257 
258  EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
259  // We won't try to take advantage of the l2 cache for the time being, and
260  // there is no l3 cache on cuda devices.
261  return firstLevelCacheSize();
262  }
263 
264  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
265 #if defined(__CUDACC__) && !defined(__CUDA_ARCH__)
266  cudaError_t err = cudaStreamSynchronize(stream_->stream());
267  if (err != cudaSuccess) {
268  std::cerr << "Error detected in CUDA stream: "
269  << cudaGetErrorString(err)
270  << std::endl;
271  assert(err == cudaSuccess);
272  }
273 #else
274  assert(false && "The default device should be used instead to generate kernel code");
275 #endif
276  }
277 
278  EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const {
279  return stream_->deviceProperties().multiProcessorCount;
280  }
281  EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const {
282  return stream_->deviceProperties().maxThreadsPerBlock;
283  }
284  EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const {
285  return stream_->deviceProperties().maxThreadsPerMultiProcessor;
286  }
287  EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
288  return stream_->deviceProperties().sharedMemPerBlock;
289  }
290  EIGEN_STRONG_INLINE int majorDeviceVersion() const {
291  return stream_->deviceProperties().major;
292  }
293  EIGEN_STRONG_INLINE int minorDeviceVersion() const {
294  return stream_->deviceProperties().minor;
295  }
296 
297  EIGEN_STRONG_INLINE int maxBlocks() const {
298  return max_blocks_;
299  }
300 
301  // This function checks if the CUDA runtime recorded an error for the
302  // underlying stream device.
303  inline bool ok() const {
304 #ifdef __CUDACC__
305  cudaError_t error = cudaStreamQuery(stream_->stream());
306  return (error == cudaSuccess) || (error == cudaErrorNotReady);
307 #else
308  return false;
309 #endif
310  }
311 
312  private:
313  const StreamInterface* stream_;
314  int max_blocks_;
315 };
316 
317 #define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
318  (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
319  assert(cudaGetLastError() == cudaSuccess);
320 
321 
322 // FIXME: Should be device and kernel specific.
323 #ifdef __CUDACC__
324 static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
325 #ifndef __CUDA_ARCH__
326  cudaError_t status = cudaDeviceSetSharedMemConfig(config);
327  EIGEN_UNUSED_VARIABLE(status)
328  assert(status == cudaSuccess);
329 #else
330  EIGEN_UNUSED_VARIABLE(config)
331 #endif
332 }
333 #endif
334 
335 } // end namespace Eigen
336 
337 #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
#define EIGEN_STRONG_INLINE
Definition: Macros.h:493
Definition: LDLT.h:16
return(x<=y?ADS(x):ADS(y))
def error(args, kwargs)
#define eigen_assert(x)
Definition: Macros.h:577
ROSCPP_DECL bool ok()
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:616


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:16