TensorContractionThreadPool.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
12 
13 // evaluator for thread pool device
14 #ifdef EIGEN_USE_THREADS
15 
16 namespace Eigen {
17 
18 #ifdef EIGEN_USE_SIMPLE_THREAD_POOL
19 namespace internal {
20 
21 template<typename LhsScalar, typename LhsMapper, typename Index>
22 struct packLhsArg {
23  LhsScalar* blockA;
24  const LhsMapper& lhs;
25  const Index m_start;
26  const Index k_start;
27  const Index mc;
28  const Index kc;
29 };
30 
31 template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
32 struct packRhsAndKernelArg {
33  const MaxSizeVector<LhsScalar*>* blockAs;
34  RhsScalar* blockB;
35  const RhsMapper& rhs;
36  OutputMapper& output;
37  const Index m;
38  const Index k;
39  const Index n;
40  const Index mc;
41  const Index kc;
42  const Index nc;
43  const Index num_threads;
44  const Index num_blockAs;
45  const Index max_m;
46  const Index k_block_idx;
47  const Index m_block_idx;
48  const Index n_block_idx;
49  const Index m_blocks;
50  const Index n_blocks;
51  MaxSizeVector<Notification*>* kernel_notifications;
52  const MaxSizeVector<Notification*>* lhs_notifications;
53  const bool need_to_pack;
54 };
55 
56 } // end namespace internal
57 #endif // EIGEN_USE_SIMPLE_THREAD_POOL
58 
59 template<typename Indices, typename LeftArgType, typename RightArgType>
60 struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
61  public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
62 
63  typedef ThreadPoolDevice Device;
64 
65  typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
66  typedef TensorContractionEvaluatorBase<Self> Base;
67 
68  typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
70  typedef typename XprType::Index Index;
71  typedef typename XprType::CoeffReturnType CoeffReturnType;
72  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
73 
74  enum {
76  };
77 
78  // Most of the code is assuming that both input tensors are ColMajor. If the
79  // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
80  // If we want to compute A * B = C, where A is LHS and B is RHS, the code
81  // will pretend B is LHS and A is RHS.
82  typedef typename internal::conditional<
83  static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
84  typedef typename internal::conditional<
85  static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
86 
87  static const int LDims =
88  internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
89  static const int RDims =
90  internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
91  static const int ContractDims = internal::array_size<Indices>::value;
92 
93  typedef array<Index, LDims> left_dim_mapper_t;
94  typedef array<Index, RDims> right_dim_mapper_t;
95 
96  typedef array<Index, ContractDims> contract_t;
97  typedef array<Index, LDims - ContractDims> left_nocontract_t;
98  typedef array<Index, RDims - ContractDims> right_nocontract_t;
99 
100  static const int NumDims = LDims + RDims - 2 * ContractDims;
101 
102  typedef DSizes<Index, NumDims> Dimensions;
103 
104  // typedefs needed in evalTo
107  typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
108 
109  typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
110  typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
111 
112  TensorEvaluator(const XprType& op, const Device& device) :
113  Base(op, device) {}
114 
115 #ifndef EIGEN_USE_SIMPLE_THREAD_POOL
116  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
117  bool rhs_inner_dim_reordered, int Alignment>
118  void evalProduct(Scalar* buffer) const {
119  typedef
121  LhsScalar;
122  typedef
124  RhsScalar;
125  typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
126  typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
127  typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
128  typedef internal::TensorContractionInputMapper<
129  LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
131  lhs_inner_dim_contiguous, false, Unaligned>
132  LhsMapper;
133  typedef internal::TensorContractionInputMapper<
134  RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
136  rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
137  RhsMapper;
138  typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
139  typedef internal::gemm_pack_lhs<LhsScalar, Index,
140  typename LhsMapper::SubMapper, Traits::mr,
141  Traits::LhsProgress, ColMajor>
142  LhsPacker;
143  typedef internal::gemm_pack_rhs<
144  RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
145  RhsPacker;
146  typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
147  Traits::mr, Traits::nr, false, false>
148  GebpKernel;
149 
150  const Index m = this->m_i_size;
151  const Index n = this->m_j_size;
152  const Index k = this->m_k_size;
153  if (m == 0 || n == 0 || k == 0) return;
154 
155  // Compute a set of algorithm parameters:
156  // - kernel block sizes (bm, bn, bk)
157  // - task grain sizes (number of kernels executed per task: gm, gn)
158  // - number of threads
159  // - sharding by row/column
160  // - parallel packing or first lhs then rhs
161  // and some derived parameters:
162  // - number of tasks (nm, nn, nk)
163  // - number of kernels (nm0, nn0)
164  // Unfortunately, all these parameters are tightly interdependent.
165  // So in some cases we first compute approximate values, then compute other
166  // values based on these approximations and then refine the approximations.
167 
168  // There are lots of heuristics here. There is some reasoning behind them,
169  // but ultimately they are just tuned on contraction benchmarks for
170  // different input configurations, thread counts and instruction sets.
171  // So feel free to question any of them.
172 
173  // Compute whether we want to shard by row or by column.
174  // This is a first approximation, it will be refined later. Since we don't
175  // know number of threads yet we use 2, because what's we are most
176  // interested in at this point is whether it makes sense to use
177  // parallelization at all or not.
178  bool shard_by_col = shardByCol(m, n, 2);
179 
180  // First approximation of kernel blocking sizes.
181  // Again, we don't know number of threads yet, so we use 2.
182  Index bm, bn, bk;
183  if (shard_by_col) {
184  internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
186  blocking(k, m, n, 2);
187  bm = blocking.mc();
188  bn = blocking.nc();
189  bk = blocking.kc();
190  } else {
191  internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
193  blocking(k, m, n, 2);
194  bm = blocking.mc();
195  bn = blocking.nc();
196  bk = blocking.kc();
197  }
198 
199  // Compute optimal number of threads.
200  // Note: we use bk instead of k here because we are interested in amount of
201  // _parallelizable_ computations, and computations are not parallelizable
202  // across k dimension.
203  const TensorOpCost cost =
204  contractionCost(m, n, bm, bn, bk, shard_by_col, false);
206  static_cast<double>(n) * m, cost, this->m_device.numThreads());
207 
208  // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
209  // model is not tuned. Remove this when the cost model is tuned.
210  if (n == 1) num_threads = 1;
211 
212  if (num_threads == 1) {
213  // The single-threaded algorithm should be faster in this case.
214  if (n == 1)
215  this->template evalGemv<lhs_inner_dim_contiguous,
216  rhs_inner_dim_contiguous,
217  rhs_inner_dim_reordered, Alignment>(buffer);
218  else
219  this->template evalGemm<lhs_inner_dim_contiguous,
220  rhs_inner_dim_contiguous,
221  rhs_inner_dim_reordered, Alignment>(buffer);
222  return;
223  }
224 
225  // Now that we know number of threads, recalculate sharding and blocking.
226  shard_by_col = shardByCol(m, n, num_threads);
227  if (shard_by_col) {
228  internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
230  blocking(k, m, n, num_threads);
231  bm = blocking.mc();
232  bn = blocking.nc();
233  bk = blocking.kc();
234  } else {
235  internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
237  blocking(k, m, n, num_threads);
238  bm = blocking.mc();
239  bn = blocking.nc();
240  bk = blocking.kc();
241  }
242 
243  // Number of kernels for each dimension.
244  Index nm0 = divup(m, bm);
245  Index nn0 = divup(n, bn);
246  Index nk = divup(k, bk);
247 
248  // Calculate task grain size (number of kernels executed per task).
249  // This task size coarsening serves two purposes:
250  // 1. It reduces per-task overheads including synchronization overheads.
251  // 2. It allows to use caches better (reuse the same packed rhs in several
252  // consecutive kernels).
253  Index gm = 1;
254  Index gn = 1;
255  // If we are sharding by column, then we prefer to reduce rows first.
256  if (shard_by_col) {
257  gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
258  gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
259  } else {
260  gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
261  gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
262  }
263  // Number of tasks in each dimension.
264  Index nm = divup(nm0, gm);
265  Index nn = divup(nn0, gn);
266 
267  // Last by not least, decide whether we want to issue both lhs and rhs
268  // packing in parallel; or issue lhs packing first, and then issue rhs
269  // packing when lhs packing completes (for !shard_by_col lhs and rhs are
270  // swapped). Parallel packing allows more parallelism (for both packing and
271  // kernels), while sequential packing provides better locality (once
272  // a thread finishes rhs packing it proceed to kernels with that rhs).
273  // First, we are interested in parallel packing if there are few tasks.
274  bool parallel_pack = num_threads >= nm * nn;
275  // Also do parallel packing if all data fits into L2$.
276  if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <=
277  l2CacheSize() * num_threads)
278  parallel_pack = true;
279  // But don't do it if we will use each rhs only once. Locality seems to be
280  // more important in this case.
281  if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
282 
283  LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides,
284  this->m_i_strides, this->m_left_contracting_strides,
285  this->m_k_strides);
286 
287  RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides,
288  this->m_j_strides, this->m_right_contracting_strides,
289  this->m_k_strides);
290 
291  Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
292  OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
293  k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
294  shard_by_col, parallel_pack)
295  .run();
296  }
297 
298  // Context coordinates a single parallel gemm operation.
299  template <typename LhsPacker, typename RhsPacker, typename GebpKernel,
300  typename LhsMapper, typename RhsMapper, typename OutputMapper>
301  class Context {
302  public:
303  Context(const Device& device, int num_threads, LhsMapper& lhs,
304  RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
305  Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
306  Index gn, Index nm0, Index nn0, bool shard_by_col,
307  bool parallel_pack)
308  : device_(device),
309  lhs_(lhs),
310  rhs_(rhs),
311  buffer_(buffer),
312  output_(buffer, tm),
313  num_threads_(num_threads),
314  shard_by_col_(shard_by_col),
315  parallel_pack_(parallel_pack),
316  m_(tm),
317  n_(tn),
318  k_(tk),
319  bm_(bm),
320  bn_(bn),
321  bk_(bk),
322  nm_(nm),
323  nn_(nn),
324  nk_(nk),
325  gm_(gm),
326  gn_(gn),
327  nm0_(nm0),
328  nn0_(nn0)
329  {
330  for (Index x = 0; x < P; x++) {
331  // Normal number of notifications for k slice switch is
332  // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
333  // nm_ + nn_ notifications, because they will not receive notifications
334  // from preceeding kernels.
335  state_switch_[x] =
336  x == 0
337  ? 1
338  : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
339  (x == P - 1 ? nm_ * nn_ : 0);
340  state_packing_ready_[x] =
341  parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
342  state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
343  for (Index m = 0; m < nm_; m++) {
344  state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
345  // Kernels generally receive 3 notifications (previous kernel + 2
346  // packing), but the first slice won't get notifications from previous
347  // kernels.
348  for (Index n = 0; n < nn_; n++)
349  state_kernel_[x][m][n].store(
350  (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
351  std::memory_order_relaxed);
352  }
353  }
354 
355  // Allocate memory for packed rhs/lhs matrices.
356  size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
357  size_t lhs_size =
358  divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align;
359  size_t rhs_size =
360  divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align;
361  packed_mem_ = static_cast<char*>(internal::aligned_malloc(
362  (nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1)));
363  char* mem = static_cast<char*>(packed_mem_);
364  for (Index x = 0; x < numext::mini<Index>(nk_, P - 1); x++) {
365  packed_lhs_[x].resize(nm0_);
366  for (Index m = 0; m < nm0_; m++) {
367  packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem);
368  mem += lhs_size;
369  }
370  packed_rhs_[x].resize(nn0_);
371  for (Index n = 0; n < nn0_; n++) {
372  packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem);
373  mem += rhs_size;
374  }
375  }
376  }
377 
378  ~Context() {
379  for (Index x = 0; x < P; x++) {
380  for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
381  delete[] state_kernel_[x];
382  }
383  internal::aligned_free(packed_mem_);
384  }
385 
386  void run() {
387  // Kick off packing of the first slice.
388  signal_switch(0, 1);
389  // Wait for overall completion.
390  // TODO(dvyukov): this wait can lead to deadlock.
391  // If nthreads contractions are concurrently submitted from worker
392  // threads, this wait will block all worker threads and the system will
393  // deadlock.
394  done_.Wait();
395  }
396 
397  private:
398  Notification done_;
399  const Device& device_;
400  LhsMapper& lhs_;
401  RhsMapper& rhs_;
402  Scalar* const buffer_;
403  OutputMapper output_;
404  const int num_threads_;
405  const bool shard_by_col_;
406  const bool parallel_pack_;
407  // Matrix sizes.
408  const Index m_;
409  const Index n_;
410  const Index k_;
411  // Block sizes.
412  const Index bm_;
413  const Index bn_;
414  const Index bk_;
415  // Number of tasks.
416  const Index nm_;
417  const Index nn_;
418  const Index nk_;
419  // Task grain sizes (number of kernels executed per task).
420  const Index gm_;
421  const Index gn_;
422  // Number of blocks (this is different from ni_/nn_ because of task size
423  // coarsening).
424  const Index nm0_;
425  const Index nn0_;
426 
427  // Parallelization strategy.
428  //
429  // Blocks related to the same k block can run in parallel because they write
430  // to different output blocks. So we parallelize within k slices, this
431  // gives us parallelism level of m x n. Before we can start any kernels
432  // related to k-th slice, we need to issue m lhs packing tasks and n rhs
433  // packing tasks.
434  //
435  // However, there is a bottleneck when we are finishing kernels for k-th
436  // slice (at the very end there is only 1 runnable kernel). To mitigate this
437  // bottleneck we allow kernels from k-th and k+1-th slices to run in
438  // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
439  // output block, so they must not run in parallel.
440  //
441  // This gives us the following dependency graph.
442  // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
443  // packing tasks.
444  // Kernel (m, n, k) can start when:
445  // - kernel (m, n, k-1) has finished
446  // - lhs packing (m, k) has finished
447  // - rhs packing (n, k) has finished
448  // Lhs/rhs packing can start when:
449  // - all k-1 packing has finished (artificially imposed to limit amount of
450  // parallel packing)
451  //
452  // On top of that we limit runnable tasks to two consecutive k slices.
453  // This is done to limit amount of memory we need for packed lhs/rhs
454  // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
455  //
456  // state_switch_ tracks when we are ready to switch to the next k slice.
457  // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
458  // These variable are rolling over 3 consecutive k slices: first two we are
459  // actively executing + one to track completion of kernels in the second
460  // slice.
461  static const Index P = 3;
462  void* packed_mem_;
463  std::vector<LhsScalar*> packed_lhs_[P - 1];
464  std::vector<RhsScalar*> packed_rhs_[P - 1];
465  std::atomic<uint8_t>** state_kernel_[P];
466  // state_switch_ is frequently modified by worker threads, while other
467  // fields are read-only after constructor. Let's move it to a separate cache
468  // line to reduce cache-coherency traffic.
469  char pad_[128];
470  std::atomic<Index> state_packing_ready_[P];
471  std::atomic<Index> state_switch_[P];
472 
473  void pack_lhs(Index m, Index k) {
474  const Index mend = m * gm_ + gm(m);
475  for (Index m1 = m * gm_; m1 < mend; m1++)
476  LhsPacker()(packed_lhs_[k % (P - 1)][m1],
477  lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
478 
479  if (!parallel_pack_ && shard_by_col_) {
480  signal_packing(k);
481  } else {
482  signal_switch(k + 1);
483  for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0);
484  }
485  }
486 
487  void pack_rhs(Index n, Index k) {
488  const Index nend = n * gn_ + gn(n);
489  for (Index n1 = n * gn_; n1 < nend; n1++) {
490  if (k == 0) {
491  // Zero the output memory in parallel.
492  // On 10000x2x10000 mm zeroing can easily take half of time.
493  // Zero (bn x m) row. Safe to do here because all kernels that will
494  // write to this memory depend on completion of this task.
495  // Note: don't call device_.memset() here. device_.memset() blocks on
496  // thread pool worker thread, which can lead to underutilization and
497  // deadlocks.
498  memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
499  }
500  RhsPacker()(packed_rhs_[k % (P - 1)][n1],
501  rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
502  }
503 
504  if (parallel_pack_ || shard_by_col_) {
505  signal_switch(k + 1);
506  for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0);
507  } else {
508  signal_packing(k);
509  }
510  }
511 
512  void kernel(Index m, Index n, Index k) {
513  // Note: order of iteration matters here. Iteration over m is innermost
514  // because we want to reuse the same packed rhs in consequetive tasks
515  // (rhs fits into L2$ while lhs only into L3$).
516  const Index nend = n * gn_ + gn(n);
517  const Index mend = m * gm_ + gm(m);
518  if (shard_by_col_) {
519  for (Index n1 = n * gn_; n1 < nend; n1++) {
520  for (Index m1 = m * gm_; m1 < mend; m1++)
521  GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
522  packed_lhs_[k % (P - 1)][m1],
523  packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
524  Scalar(1), -1, -1, 0, 0);
525  }
526  } else {
527  for (Index m1 = m * gm_; m1 < mend; m1++)
528  for (Index n1 = n * gn_; n1 < nend; n1++) {
529  GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
530  packed_lhs_[k % (P - 1)][m1],
531  packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
532  Scalar(1), -1, -1, 0, 0);
533  }
534  }
535  signal_kernel(m, n, k + 1, false);
536  signal_switch(k + 2);
537  }
538 
539  void signal_packing(Index k) {
540  eigen_assert(!parallel_pack_);
541  Index s = state_packing_ready_[k % P].fetch_sub(1);
542  eigen_assert(s > 0);
543  if (s != 1) return;
544  state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
545  enqueue_packing(k, shard_by_col_);
546  }
547 
548  void signal_kernel(Index m, Index n, Index k, bool sync) {
549  std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
550  Index s = state->load();
551  eigen_assert(s > 0);
552  if (s != 1 && state->fetch_sub(1) != 1) return;
553  state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
554  if (sync)
555  kernel(m, n, k);
556  else
557  device_.enqueueNoNotification([=]() { kernel(m, n, k); });
558  }
559 
560  void signal_switch(Index k, Index v = 1) {
561  Index s = state_switch_[k % P].fetch_sub(v);
562  eigen_assert(s >= v);
563  if (s != v) return;
564 
565  // Ready to switch to the next k slice.
566  // Reset counter for the next iteration.
567  state_switch_[k % P] =
568  (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
569  nm_ * nn_;
570  if (k < nk_) {
571  // Issue lhs/rhs packing. Their completion will in turn kick off
572  // kernels.
573  if (parallel_pack_) {
574  enqueue_packing(k, !shard_by_col_);
575  enqueue_packing(k, shard_by_col_);
576  } else if (shard_by_col_) {
577  enqueue_packing(k, false);
578  } else {
579  enqueue_packing(k, true);
580  }
581 
582  // Termination handling.
583  // Because kernel completion signals k + 2 switch, we need to finish nk
584  // + 2 slices without issuing any tasks on nk + 1 slice. So here we
585  // pretend that all nk + 1 packing tasks just finish instantly; so that
586  // nk + 2 switch only waits for completion of nk kernels.
587  } else if (k == nk_) {
588  signal_switch(k + 1,
589  parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
590  } else {
591  done_.Notify();
592  }
593  }
594 
595  // Enqueue all rhs/lhs packing for k-th slice.
596  void enqueue_packing(Index k, bool rhs) {
597  enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
598  }
599 
600  void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
601  if (end - start == 1) {
602  if (rhs)
603  pack_rhs(start, k);
604  else
605  pack_lhs(start, k);
606  } else {
607  Index mid = (start + end) / 2;
608  device_.enqueueNoNotification(
609  [=]() { enqueue_packing_helper(mid, end, k, rhs); });
610  device_.enqueueNoNotification(
611  [=]() { enqueue_packing_helper(start, mid, k, rhs); });
612  }
613  }
614 
615  // Block sizes with accounting for potentially incomplete last block.
616  Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
617  Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
618  Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
619  // Task grain sizes accounting for potentially incomplete last task.
620  Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
621  Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
622 
623  Context(const Context&) = delete;
624  void operator=(const Context&) = delete;
625  };
626 
627  // Decide whether we want to shard m x n contraction by columns or by rows.
628  static bool shardByCol(Index m, Index n, Index num_threads) {
629  // Note: we are comparing both n and m against Traits::nr, it is not
630  // a mistake. We are trying to figure out how both n and m will fit into
631  // the main sharding dimension.
632 
633  // Sharding by column is the default
634  // ... unless there is enough data for vectorization over rows
635  if (m / num_threads >= Traits::nr &&
636  // and not enough data for vectorization over columns
637  (n / num_threads < Traits::nr ||
638  // ... or barely enough data for vectorization over columns,
639  // but it is not evenly dividable across threads
640  (n / num_threads < 4 * Traits::nr &&
641  (n % (num_threads * Traits::nr)) != 0 &&
642  // ... and it is evenly dividable across threads for rows
643  ((m % (num_threads * Traits::nr)) == 0 ||
644  // .. or it is not evenly dividable for both dimensions but
645  // there is much more data over rows so that corner effects are
646  // mitigated.
647  (m / n >= 6)))))
648  return false;
649  // Wait, or if matrices are just substantially prolonged over the other
650  // dimension.
651  if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
652  return true;
653  }
654 
655  Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
656  int num_threads, bool shard_by_col) const {
657  Index gm = 1;
658  Index gm1 = 1;
659  Index nm0 = divup(m, bm);
660  Index nm1 = nm0;
661  for (;;) {
662  // Find the next candidate for m grain size. It needs to result in
663  // different number of blocks. E.g. if we have 10 kernels, we want to try
664  // 5 and 10, but not 6, 7, 8 and 9.
665  while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
666  if (gm1 > nm0) break;
667  // Check the candidate.
668  int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
669  shard_by_col);
670  if (res < 0) break;
671  nm1 = divup(nm0, gm1);
672  if (res == 0) continue;
673  // Commit new grain size.
674  gm = gm1;
675  }
676  return gm;
677  }
678 
679  Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
680  int num_threads, bool shard_by_col) const {
681  Index gn = 1;
682  Index gn1 = 1;
683  Index nn0 = divup(n, bn);
684  Index nn1 = nn0;
685  for (;;) {
686  while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
687  if (gn1 > nn0) break;
688  int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
689  shard_by_col);
690  if (res < 0) break;
691  nn1 = divup(nn0, gn1);
692  if (res == 0) continue;
693  gn = gn1;
694  }
695  return gn;
696  }
697 
698  // checkGrain checks whether grain (gm, gn) is suitable and is better than
699  // (oldgm, oldgn).
700  int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
701  Index gn, Index oldgm, Index oldgn, int num_threads,
702  bool shard_by_col) const {
703  const TensorOpCost cost =
704  contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
706  static_cast<double>(bm) * gm * bn * gn, cost);
707  // If the task is too small, then we agree on it regardless of anything
708  // else. Otherwise synchronization overheads will dominate.
709  if (taskSize < 1) return 1;
710  // If it is too large, then we reject it and all larger tasks.
711  if (taskSize > 2) return -1;
712  // Now we are in presumably good task size range.
713  // The main deciding factor here is parallelism. Consider that we have 12
714  // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
715  // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
716  // of cores will be busy). While grain size 3 gives us 4 tasks, which gives
717  // us parallelism of 1 (we can load all cores).
718  Index nm0 = divup(m, bm);
719  Index nn0 = divup(n, bn);
720  Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
721  double new_parallelism = static_cast<double>(new_tasks) /
722  (divup<int>(new_tasks, num_threads) * num_threads);
723  Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
724  double old_parallelism = static_cast<double>(old_tasks) /
725  (divup<int>(old_tasks, num_threads) * num_threads);
726  if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
727  return 0;
728  }
729 
730 #else // EIGEN_USE_SIMPLE_THREAD_POOL
731 
732  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
733  void evalProduct(Scalar* buffer) const {
734  if (this->m_j_size == 1) {
735  this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
736  return;
737  }
738 
739  evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
740  }
741 
742  template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
743  void evalGemm(Scalar* buffer) const {
744  // columns in left side, rows in right side
745  const Index k = this->m_k_size;
746 
747  // rows in left side
748  const Index m = this->m_i_size;
749 
750  // columns in right side
751  const Index n = this->m_j_size;
752 
753  // zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
754  this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
755 
756 
759 
760  typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
761  LeftEvaluator, left_nocontract_t,
762  contract_t, lhs_packet_size,
763  lhs_inner_dim_contiguous,
764  false, Unaligned> LhsMapper;
765 
766  typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
767  RightEvaluator, right_nocontract_t,
768  contract_t, rhs_packet_size,
769  rhs_inner_dim_contiguous,
770  rhs_inner_dim_reordered, Unaligned> RhsMapper;
771 
772  typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
773 
774  // TODO: packing could be faster sometimes if we supported row major tensor mappers
775  typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
776  Traits::LhsProgress, ColMajor> LhsPacker;
777  typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;
778 
779  // TODO: replace false, false with conjugate values?
780  typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
781  Traits::mr, Traits::nr, false, false> GebpKernel;
782 
783  typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
784  typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;
785 
786  // initialize data mappers
787  LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
788  this->m_left_contracting_strides, this->m_k_strides);
789 
790  RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
791  this->m_right_contracting_strides, this->m_k_strides);
792 
793  OutputMapper output(buffer, m);
794 
795  // compute block sizes (which depend on number of threads)
796  const Index num_threads = this->m_device.numThreads();
797  internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads);
798  Index mc = blocking.mc();
799  Index nc = blocking.nc();
800  Index kc = blocking.kc();
801  eigen_assert(mc <= m);
802  eigen_assert(nc <= n);
803  eigen_assert(kc <= k);
804 
805 #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
806  const Index k_blocks = CEIL_DIV(k, kc);
807  const Index n_blocks = CEIL_DIV(n, nc);
808  const Index m_blocks = CEIL_DIV(m, mc);
809  const Index sizeA = mc * kc;
810  const Index sizeB = kc * nc;
811 
812  /* cout << "m: " << m << " n: " << n << " k: " << k << endl;
813  cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
814  cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
815  cout << "num threads: " << num_threads << endl;
816  */
817 
818  // note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
819  // aren't 16 byte aligned segfaults will happen due to SIMD instructions
820  // note: You can get away with allocating just a single blockA and offsets and meet the
821  // the alignment requirements with the assumption that
822  // (Traits::mr * sizeof(ResScalar)) % 16 == 0
823  const Index numBlockAs = numext::mini(num_threads, m_blocks);
824  MaxSizeVector<LhsScalar *> blockAs(num_threads);
825  for (int i = 0; i < num_threads; i++) {
826  blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
827  }
828 
829  // To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
830  // TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
831  // Other options: (1) reuse memory when a thread finishes. con: tricky
832  // (2) allocate block B memory in each thread. con: overhead
833  MaxSizeVector<RhsScalar *> blockBs(n_blocks);
834  for (int i = 0; i < n_blocks; i++) {
835  blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
836  }
837 
838  // lhs_notifications starts with all null Notifications
839  MaxSizeVector<Notification*> lhs_notifications(num_threads, nullptr);
840 
841  // this should really be numBlockAs * n_blocks;
842  const Index num_kernel_notifications = num_threads * n_blocks;
843  MaxSizeVector<Notification*> kernel_notifications(num_kernel_notifications,
844  nullptr);
845 
846  for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
847  const Index k_start = k_block_idx * kc;
848  // make sure we don't overshoot right edge of left matrix
849  const Index actual_kc = numext::mini(k_start + kc, k) - k_start;
850 
851  for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
852  const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs);
853 
854  for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
855  const Index m_start = mt_block_idx * mc;
856  const Index actual_mc = numext::mini(m_start + mc, m) - m_start;
857  eigen_assert(actual_mc > 0);
858 
859  Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
860 
861  for (int i = 0; i < n_blocks; ++i) {
862  Index notification_id = (blockAId * n_blocks + i);
863  // Wait for any current kernels using this slot to complete
864  // before using it.
865  if (kernel_notifications[notification_id]) {
866  wait_until_ready(kernel_notifications[notification_id]);
867  delete kernel_notifications[notification_id];
868  }
869  kernel_notifications[notification_id] = new Notification();
870  }
871  const packLArg arg = {
872  blockAs[blockAId], // blockA
873  lhs, // lhs
874  m_start, // m
875  k_start, // k
876  actual_mc, // mc
877  actual_kc, // kc
878  };
879 
880  // Delete any existing notification since we may be
881  // replacing it. The algorithm should ensure that there are
882  // no existing waiters on this notification.
883  delete lhs_notifications[blockAId];
884  lhs_notifications[blockAId] =
885  this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
886  }
887 
888  // now start kernels.
889  const Index m_base_start = m_block_idx * mc;
890  const bool need_to_pack = m_block_idx == 0;
891 
892  for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
893  const Index n_start = n_block_idx * nc;
894  const Index actual_nc = numext::mini(n_start + nc, n) - n_start;
895 
896  // first make sure the previous kernels are all done before overwriting rhs. Also wait if
897  // we're going to start new k. In both cases need_to_pack is true.
898  if (need_to_pack) {
899  for (Index i = num_blocks; i < num_threads; ++i) {
900  Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
901  Index future_id = (blockAId * n_blocks + n_block_idx);
902  wait_until_ready(kernel_notifications[future_id]);
903  }
904  }
905 
906  packRKArg arg = {
907  &blockAs, // blockA
908  blockBs[n_block_idx], // blockB
909  rhs, // rhs
910  output, // output
911  m_base_start, // m
912  k_start, // k
913  n_start, // n
914  mc, // mc
915  actual_kc, // kc
916  actual_nc, // nc
917  num_threads,
918  numBlockAs,
919  m,
920  k_block_idx,
921  m_block_idx,
922  n_block_idx, // n_block_idx
923  m_blocks, // m_blocks
924  n_blocks, // n_blocks
925  &kernel_notifications, // kernel notifications
926  &lhs_notifications, // lhs notifications
927  need_to_pack, // need_to_pack
928  };
929 
930  // We asynchronously kick off this function, which ends up
931  // notifying the appropriate kernel_notifications objects,
932  // which this thread waits on before exiting.
933  this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
934  }
935  }
936  }
937 
938  // Make sure all the kernels are done.
939  for (size_t i = 0; i < kernel_notifications.size(); ++i) {
940  wait_until_ready(kernel_notifications[i]);
941  delete kernel_notifications[i];
942  }
943 
944  // No need to wait for lhs notifications since they should have
945  // already been waited on. Just clean them up.
946  for (size_t i = 0; i < lhs_notifications.size(); ++i) {
947  delete lhs_notifications[i];
948  }
949 
950  // deallocate all of the memory for both A and B's
951  for (size_t i = 0; i < blockAs.size(); i++) {
952  this->m_device.deallocate(blockAs[i]);
953  }
954  for (size_t i = 0; i < blockBs.size(); i++) {
955  this->m_device.deallocate(blockBs[i]);
956  }
957 
958 #undef CEIL_DIV
959  }
960 
961  /*
962  * Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
963  * the LHS block, check that all of the kernels that worked on the same
964  * mt_block_idx in the previous m_block are done.
965  */
966  template <typename packLArg, typename LhsPacker>
967  static void packLhs(const packLArg arg) {
968  // perform actual packing
969  LhsPacker pack_lhs;
970  pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
971  }
972 
973  /*
974  * Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
975  * all kernels in the previous block are done.
976  * Then for each LHS future, we wait on the future and then call GEBP
977  * on the area packed by the future (which starts at
978  * blockA + future_idx * mt * kc) on the LHS and with the full packed
979  * RHS block.
980  * The output of this GEBP is written to output(m + i * mt, n).
981  */
982  template <typename packRKArg, typename RhsPacker, typename GebpKernel>
983  static void packRhsAndKernel(packRKArg arg) {
984  if (arg.need_to_pack) {
985  RhsPacker pack_rhs;
986  pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
987  }
988 
989  GebpKernel gebp;
990  for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
991  const Index m_base_start = arg.m + arg.mc*mt_block_idx;
992  if (m_base_start < arg.max_m) {
993  Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;
994  wait_until_ready((*arg.lhs_notifications)[blockAId]);
995  const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start;
996  gebp(arg.output.getSubMapper(m_base_start, arg.n),
997  (*arg.blockAs)[blockAId], arg.blockB,
998  actual_mc, arg.kc, arg.nc, Scalar(1), -1, -1, 0, 0);
999 
1000  // Notify that the kernel is done.
1001  const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
1002  (*arg.kernel_notifications)[set_idx]->Notify();
1003  }
1004  }
1005  }
1006 #endif // EIGEN_USE_SIMPLE_THREAD_POOL
1007 
1008  TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
1009  bool shard_by_col, bool prepacked) const {
1010  const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
1012  const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
1013  const double kd = static_cast<double>(bk);
1014  // Peak VFMA bandwidth is 0.5. However if we have not enough data for
1015  // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
1016  // experimentally.
1017  double computeBandwidth = bk == 1 ? 4.0 :
1018  (shard_by_col ? bn : bm) < Traits::nr ||
1019  (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
1020 #ifndef EIGEN_VECTORIZE_FMA
1021  // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
1022  // However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
1023  // so overall bandwidth is 1.0.
1024  if (computeBandwidth == 0.5) computeBandwidth = 1.0;
1025 #endif
1026  // Computations.
1027  TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
1028  // Output stores.
1029  cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
1030  if (prepacked) {
1031  // Packing and kernels are executed in different tasks. When we calculate
1032  // task grain size we look only at kernel cost assuming that kernel
1033  // is more expensive than packing.
1034  return cost;
1035  }
1036  // Lhs/rhs loads + computations.
1037  TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
1038  TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
1039  // Lhs packing memory cost does not contribute considerably to overall
1040  // execution time because lhs is prefetched early and accessed sequentially.
1041  if (shard_by_col)
1042  lhsCost.dropMemoryCost();
1043  else
1044  rhsCost.dropMemoryCost();
1045  return cost + lhsCost + rhsCost;
1046  }
1047 };
1048 
1049 } // end namespace Eigen
1050 
1051 #endif // EIGEN_USE_THREADS
1052 #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int numThreads(double output_size, const TensorOpCost &cost_per_coeff, int max_threads)
EIGEN_DEVICE_FUNC void * aligned_malloc(std::size_t size)
Definition: Memory.h:153
#define EIGEN_MAX_ALIGN_BYTES
Definition: Macros.h:773
XmlRpcServer s
EIGEN_DEVICE_FUNC const Scalar & x
Definition: LDLT.h:16
EIGEN_DEVICE_FUNC void aligned_free(void *ptr)
Definition: Memory.h:174
std::ptrdiff_t l2CacheSize()
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
#define eigen_assert(x)
Definition: Macros.h:577
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArgReturnType arg() const
void run(Expr &expr, Dev &dev)
Definition: TensorSyclRun.h:33
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double taskSize(double output_size, const TensorOpCost &cost_per_coeff)
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T divup(const X x, const Y y)
Definition: TensorMeta.h:30
internal::packet_traits< Scalar >::type type
Definition: TensorMeta.h:51


hebiros
Author(s): Xavier Artache , Matthew Tesch
autogenerated on Thu Sep 3 2020 04:09:15