TypeDefs.hpp
Go to the documentation of this file.
1 /*
2  * TypeDefs.hpp
3  *
4  * Created on: March 18, 2014
5  * Author: Péter Fankhauser
6  * Institute: ETH Zurich, ANYbotics
7  */
8
9 // Eigen
10 #include <Eigen/Core>
11
12 #pragma once
13
14 namespace grid_map {
15
16  typedef Eigen::MatrixXf Matrix;
17  typedef Matrix::Scalar DataType;
18  typedef Eigen::Vector2d Position;
19  typedef Eigen::Vector2d Vector;
20  typedef Eigen::Vector3d Position3;
21  typedef Eigen::Vector3d Vector3;
22  typedef Eigen::Array2i Index;
23  typedef Eigen::Array2i Size;
24  typedef Eigen::Array2d Length;
25  typedef uint64_t Time;
26
27  /*
28  * Interpolations are ordered in the order
29  * of increasing accuracy and computational complexity.
30  * INTER_NEAREST - fastest, but least accurate,
31  * INTER_CUBIC - slowest, but the most accurate.
32  * see:
33  * https://en.wikipedia.org/wiki/Bicubic_interpolation
34  * https://web.archive.org/web/20051024202307/http://www.geovista.psu.edu/sites/geocomp99/Gc99/082/gc_082.htm
35  * for more info. Cubic convolution algorithm is also known as piecewise cubic
36  * interpolation and in general does not guarantee continuous
37  * first derivatives.
38  */
40  INTER_NEAREST, // nearest neighbor interpolation
41  INTER_LINEAR, // bilinear interpolation
42  INTER_CUBIC_CONVOLUTION, //piecewise bicubic interpolation using convolution algorithm
43  INTER_CUBIC // standard bicubic interpolation
44  };
45
46 } /* namespace */
Eigen::Array2i Index
Definition: TypeDefs.hpp:22
Eigen::Vector2d Vector
Definition: TypeDefs.hpp:19
Eigen::Array2i Size
Definition: TypeDefs.hpp:23
Eigen::MatrixXf Matrix
Definition: TypeDefs.hpp:16
InterpolationMethods
Definition: TypeDefs.hpp:39
Eigen::Vector3d Position3
Definition: TypeDefs.hpp:20
Eigen::Vector2d Position
Definition: TypeDefs.hpp:18
uint64_t Time
Definition: TypeDefs.hpp:25
Matrix::Scalar DataType
Definition: TypeDefs.hpp:17
Eigen::Vector3d Vector3
Definition: TypeDefs.hpp:21
Eigen::Array2d Length
Definition: TypeDefs.hpp:24

grid_map_core
Author(s): Péter Fankhauser
autogenerated on Sat Apr 10 2021 02:14:08