Program Listing for File bdcsvd.hpp
↰ Return to documentation for file (include/nanoeigenpy/decompositions/bdcsvd.hpp
)
#pragma once
#include "nanoeigenpy/fwd.hpp"
#include "nanoeigenpy/decompositions/svd-base.hpp"
#include <Eigen/SVD>
namespace nanoeigenpy {
namespace nb = nanobind;
using namespace nb::literals;
template <typename MatrixType, typename MatrixOrVector>
MatrixOrVector solve(const Eigen::BDCSVD<MatrixType> &c,
const MatrixOrVector &vec) {
return c.solve(vec);
}
template <typename _MatrixType>
void exposeBDCSVD(nb::module_ m, const char *name) {
using MatrixType = _MatrixType;
using Solver = Eigen::BDCSVD<MatrixType>;
using Scalar = typename MatrixType::Scalar;
using VectorType = Eigen::Matrix<Scalar, -1, 1>;
if (check_registration_alias<Solver>(m)) {
return;
}
nb::class_<Solver>(
m, name,
"Bidiagonal Divide and Conquer SVD. \n\n"
"This class first reduces the input matrix "
"to bi-diagonal form using class UpperBidiagonalization, "
"and then performs a divide-and-conquer diagonalization. "
"Small blocks are diagonalized using class JacobiSVD. You "
"can control the switching size with the setSwitchSize() "
"method, default is 16. For small matrice (<16), it is thus "
"preferable to directly use JacobiSVD. For larger ones, BDCSVD "
"is highly recommended and can several order of magnitude faster.")
.def(nb::init<>(), "Default constructor.")
.def(nb::init<Eigen::DenseIndex, Eigen::DenseIndex, unsigned int>(),
"rows"_a, "cols"_a, "computationOptions"_a = 0,
"Default constructor with memory preallocation.")
.def(nb::init<const MatrixType &, unsigned int>(), "matrix"_a,
"computationOptions"_a = 0,
"Constructs a SVD factorization from a given matrix.")
.def(SVDBaseVisitor())
.def(
"compute",
[](Solver &c, const MatrixType &matrix) -> Solver & {
return c.compute(matrix);
},
"matrix"_a, "Computes the SVD of given matrix.",
nb::rv_policy::reference)
.def(
"compute",
[](Solver &c, const MatrixType &matrix, unsigned int) -> Solver & {
return c.compute(matrix);
},
"matrix"_a, "computationOptions"_a,
"Computes the SVD of given matrix.", nb::rv_policy::reference)
.def("setSwitchSize", &Solver::setSwitchSize, "s"_a)
.def(
"solve",
[](const Solver &c, const VectorType &b) -> VectorType {
return solve(c, b);
},
"b"_a,
"Returns the solution x of A x = b using the current "
"decomposition of A.")
.def(
"solve",
[](const Solver &c, const MatrixType &B) -> MatrixType {
return solve(c, B);
},
"B"_a,
"Returns the solution X of A X = B using the current "
"decomposition of A where B is a right hand side matrix.")
.def(IdVisitor());
}
} // namespace nanoeigenpy