README
v4l2_camera
A ROS 2 camera driver using Video4Linux2 (V4L2).
Features
Lists and exposes all user-settable controls of your camera as ROS 2 parameters.
Uses
cv_bridge
to convert raw frames to ROS 2 messages, so supports a wide range of encoding conversions.Supports
image_transport
to enable compression.Supports composing the camera node and using ROS 2 intra-process commmunication with zero-copy messaging.
Supported Cameras
The package should work with any camera that properly supports V4L2,
which for instance should include most USB cameras. A good way to
check your camera is to install the v4l2-utils
package (on Debian
based systems), and run the v4l2-compliance
tool. If that reports
no, or limited amounts of, failures or warnings, you should be good to
go.
The following cameras have in any case been proven to work:
Brand |
Type |
Driver |
Notes |
---|---|---|---|
Logitech |
C920 |
|
|
Logitech |
BRIO 4K Pro |
|
|
Microdia |
Integrated Webcam HD |
|
Integrated laptop camera, e.g. Dell XPS series |
Raspberry Pi |
Camera Module V2 (Noir) |
|
See Raspberry Pi Support notes below |
Do let us know about other devices you successfully use this driver for, for instance through a merge request.
Raspberry Pi Support
Raspberry Pi has moved to a new camera stack based on
libcamera. As
part of this, by default the Broadcom Unicam driver will be loaded for
Raspberry Pi camera modules. This is still a V4L2 driver, however it
has a very limited scope and only provides raw Bayer images. Any
available Image Signal Processors, that can turn those raw images into
more useful formats such as RGB or JPEG, are now exposed as separate
V4L2 devices. This means that responsibility is pushed to an
application such as v4l2_camera
to operate the multiple devices,
rather than the single all-in-one device that most other V4L2 drivers
expose. Supporting this is out of scope of this package.
You can find out whether the Unicam driver is used by installing the
v4l-utils
package, running:
v4l2-ctl -D
and checking for bcm2835-unicam
. You can also install and run the
v4l2_camera
node, which mentionsunicam
as part of the driver name.
Luckily, for at least some devices, it is possible to load the legacy
driver instead of the new Unicam driver, by changing settings in the
/boot/config.txt
file:
Set
camera_autodetect=0
to prevent hardware overlays that use the Unicam driver to be loaded.Set
start_x=1
to enable the camera using the legacy driver.
Now when you reboot and run v4l2-ctl -D
again, or the v4l2_camera
node, you should see the driver being referred to as bm2835 mmal
instead. The v4l2_camera
node should then operate as normal.
Installation
ROS package install
This package is available from the ROS package repositories and can therefore be installed with the following command and your ROS version name:
sudo apt-get install ros-${ROS_DISTRO}-v4l2-camera
Building from source
To build this package from source, simply clone this repository into
your workspace, install dependencies, and build it using colcon
:
git clone --branch ${ROS_DISTRO} https://gitlab.com/boldhearts/ros2_v4l2_camera.git src/v4l2_camera
rosdep install --from-paths src/v4l2_camera --ignore-src -r -y
colcon build
That should be sufficient in most cases, but this article goes into further detail. It focuses on Raspberry Pi OS with the Raspberry Pi Camera Module V2, but the steps should be generally applicable.
Basic Usage
Run the camera node to publish camera images, using the default parameters:
ros2 run v4l2_camera v4l2_camera_node
You can use rqt-image-view
to preview the images (open another terminal):
sudo apt-get install ros-${ROS_DISTRO}-rqt-image-view
ros2 run rqt_image_view rqt_image_view
Nodes
v4l2_camera_node
The v4l2_camera_node
interfaces with standard V4L2 devices and
publishes images as sensor_msgs/Image
messages.
Published Topics
/image_raw
-sensor_msgs/Image
The image.
Parameters
video_device
-string
, default:"/dev/video0"
The device the camera is on.
pixel_format
-string
, default:"YUYV"
The pixel format to request from the camera. Must be a valid four character ‘FOURCC’ code supported by V4L2 and by your camera. The node outputs the available formats supported by your camera when started. Currently supported:
"YUYV"
,"UYVY"
, or"GREY"
output_encoding
-string
, default:"rgb8"
The encoding to use for the output image. Can be any supported by
cv_bridge
given the input pixel format. Currently these are:"YUYV"
:"yuv422_yuy2"
(no conversion), or"mono8"
,"rgb8"
,"bgr8"
,"rgba8"
and"bgra8"
, plus their 16 bit variants"UYVY"
:"yuv422"
(no conversion), or"mono8"
,"rgb8"
,"bgr8"
,"rgba8"
and"bgra8"
, plus their 16 bit variants"GREY"
:"mono8"
(no conversion),"rgb8"
,"bgr8"
,"rgba8"
and"bgra8"
, plus their 16 bit variants
image_size
-integer_array
, default:[640, 480]
Width and height of the image.
Camera Control Parameters
Camera controls, such as brightness, contrast, white balance, etc, are automatically made available as parameters. The driver node enumerates all controls, and creates a parameter for each, with the corresponding value type. The parameter name is derived from the control name reported by the camera driver, made lower case, commas removed, and spaces replaced by underscores. So
Brightness
becomesbrightness
, andWhite Balance, Automatic
becomeswhite_balance_automatic
.
Compressed Transport
This package uses image_transport
to publish images and make
compression possible. However, by default it only supports raw
transfer, additional plugins are required to enable compression. These
need to be installed separately, either cloning an building them from
source, or
installing the ready made package:
sudo apt-get install ros-${ROS_DISTRO}-image-transport-plugins
Once installed, they will be automatically used by the driver and
additional topics will be available, including
/image_raw/compressed
.