Program Listing for File motion-dense.hpp
↰ Return to documentation for file (include/pinocchio/spatial/motion-dense.hpp
)
//
// Copyright (c) 2017-2019 CNRS INRIA
//
#ifndef __pinocchio_motion_dense_hpp__
#define __pinocchio_motion_dense_hpp__
#include "pinocchio/spatial/skew.hpp"
namespace pinocchio
{
template<typename Derived>
struct SE3GroupAction< MotionDense<Derived> >
{
typedef typename SE3GroupAction< Derived >::ReturnType ReturnType;
};
template<typename Derived, typename MotionDerived>
struct MotionAlgebraAction< MotionDense<Derived>, MotionDerived >
{
typedef typename MotionAlgebraAction< Derived, MotionDerived >::ReturnType ReturnType;
};
template<typename Derived>
class MotionDense : public MotionBase<Derived>
{
public:
typedef MotionBase<Derived> Base;
MOTION_TYPEDEF_TPL(Derived);
typedef typename traits<Derived>::MotionRefType MotionRefType;
using Base::linear;
using Base::angular;
using Base::derived;
using Base::isApprox;
using Base::isZero;
Derived & setZero() { linear().setZero(); angular().setZero(); return derived(); }
Derived & setRandom() { linear().setRandom(); angular().setRandom(); return derived(); }
ActionMatrixType toActionMatrix_impl() const
{
ActionMatrixType X;
X.template block <3,3> (ANGULAR, ANGULAR) = X.template block <3,3> (LINEAR, LINEAR) = skew(angular());
X.template block <3,3> (LINEAR, ANGULAR) = skew(linear());
X.template block <3,3> (ANGULAR, LINEAR).setZero();
return X;
}
ActionMatrixType toDualActionMatrix_impl() const
{
ActionMatrixType X;
X.template block <3,3> (ANGULAR, ANGULAR) = X.template block <3,3> (LINEAR, LINEAR) = skew(angular());
X.template block <3,3> (ANGULAR, LINEAR) = skew(linear());
X.template block <3,3> (LINEAR, ANGULAR).setZero();
return X;
}
HomogeneousMatrixType toHomogeneousMatrix_impl() const
{
HomogeneousMatrixType M;
M.template block<3,3>(0, 0) = skew(angular());
M.template block<3,1>(0, 3) = linear();
M.template block<1,4>(3, 0).setZero();
return M;
}
template<typename D2>
bool isEqual_impl(const MotionDense<D2> & other) const
{ return linear() == other.linear() && angular() == other.angular(); }
template<typename D2>
bool isEqual_impl(const MotionBase<D2> & other) const
{ return other.derived() == derived(); }
// Arithmetic operators
template<typename D2>
Derived & operator=(const MotionDense<D2> & other)
{
linear() = other.linear();
angular() = other.angular();
return derived();
}
template<typename D2>
Derived & operator=(const MotionBase<D2> & other)
{
other.derived().setTo(derived());
return derived();
}
template<typename V6>
Derived & operator=(const Eigen::MatrixBase<V6> & v)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(V6); assert(v.size() == 6);
linear() = v.template segment<3>(LINEAR);
angular() = v.template segment<3>(ANGULAR);
return derived();
}
MotionPlain operator-() const { return derived().__opposite__(); }
template<typename M1>
MotionPlain operator+(const MotionDense<M1> & v) const { return derived().__plus__(v.derived()); }
template<typename M1>
MotionPlain operator-(const MotionDense<M1> & v) const { return derived().__minus__(v.derived()); }
template<typename M1>
Derived & operator+=(const MotionDense<M1> & v) { return derived().__pequ__(v.derived()); }
template<typename M1>
Derived & operator+=(const MotionBase<M1> & v)
{ v.derived().addTo(derived()); return derived(); }
template<typename M1>
Derived & operator-=(const MotionDense<M1> & v) { return derived().__mequ__(v.derived()); }
MotionPlain __opposite__() const { return MotionPlain(-linear(),-angular()); }
template<typename M1>
MotionPlain __plus__(const MotionDense<M1> & v) const
{ return MotionPlain(linear()+v.linear(), angular()+v.angular()); }
template<typename M1>
MotionPlain __minus__(const MotionDense<M1> & v) const
{ return MotionPlain(linear()-v.linear(), angular()-v.angular()); }
template<typename M1>
Derived & __pequ__(const MotionDense<M1> & v)
{ linear() += v.linear(); angular() += v.angular(); return derived(); }
template<typename M1>
Derived & __mequ__(const MotionDense<M1> & v)
{ linear() -= v.linear(); angular() -= v.angular(); return derived(); }
template<typename OtherScalar>
MotionPlain __mult__(const OtherScalar & alpha) const
{ return MotionPlain(alpha*linear(),alpha*angular()); }
template<typename OtherScalar>
MotionPlain __div__(const OtherScalar & alpha) const
{ return derived().__mult__((OtherScalar)(1)/alpha); }
template<typename F1>
Scalar dot(const ForceBase<F1> & phi) const
{ return phi.linear().dot(linear()) + phi.angular().dot(angular()); }
template<typename D>
typename MotionAlgebraAction<D,Derived>::ReturnType cross_impl(const D & d) const
{
return d.motionAction(derived());
}
template<typename M1, typename M2>
void motionAction(const MotionDense<M1> & v, MotionDense<M2> & mout) const
{
mout.linear() = v.linear().cross(angular())+v.angular().cross(linear());
mout.angular() = v.angular().cross(angular());
}
template<typename M1>
MotionPlain motionAction(const MotionDense<M1> & v) const
{
MotionPlain res;
motionAction(v,res);
return res;
}
template<typename M2>
bool isApprox(const MotionDense<M2> & m2, const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
{
return derived().isApprox_impl(m2, prec);
}
template<typename D2>
bool isApprox_impl(const MotionDense<D2> & m2, const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
{
return linear().isApprox(m2.linear(), prec) && angular().isApprox(m2.angular(), prec);
}
bool isZero_impl(const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
{
return linear().isZero(prec) && angular().isZero(prec);
}
template<typename S2, int O2, typename D2>
void se3Action_impl(const SE3Tpl<S2,O2> & m, MotionDense<D2> & v) const
{
v.angular().noalias() = m.rotation()*angular();
v.linear().noalias() = m.rotation()*linear() + m.translation().cross(v.angular());
}
template<typename S2, int O2>
typename SE3GroupAction<Derived>::ReturnType
se3Action_impl(const SE3Tpl<S2,O2> & m) const
{
typename SE3GroupAction<Derived>::ReturnType res;
se3Action_impl(m,res);
return res;
}
template<typename S2, int O2, typename D2>
void se3ActionInverse_impl(const SE3Tpl<S2,O2> & m, MotionDense<D2> & v) const
{
v.linear().noalias() = m.rotation().transpose()*(linear()-m.translation().cross(angular()));
v.angular().noalias() = m.rotation().transpose()*angular();
}
template<typename S2, int O2>
typename SE3GroupAction<Derived>::ReturnType
se3ActionInverse_impl(const SE3Tpl<S2,O2> & m) const
{
typename SE3GroupAction<Derived>::ReturnType res;
se3ActionInverse_impl(m,res);
return res;
}
void disp_impl(std::ostream & os) const
{
os
<< " v = " << linear().transpose () << std::endl
<< " w = " << angular().transpose () << std::endl;
}
MotionRefType ref() { return derived().ref(); }
}; // class MotionDense
template<typename M1, typename M2>
typename traits<M1>::MotionPlain operator^(const MotionDense<M1> & v1,
const MotionDense<M2> & v2)
{ return v1.derived().cross(v2.derived()); }
template<typename M1, typename F1>
typename traits<F1>::ForcePlain operator^(const MotionDense<M1> & v,
const ForceBase<F1> & f)
{ return v.derived().cross(f.derived()); }
template<typename M1>
typename traits<M1>::MotionPlain operator*(const typename traits<M1>::Scalar alpha,
const MotionDense<M1> & v)
{ return v*alpha; }
} // namespace pinocchio
#endif // ifndef __pinocchio_motion_dense_hpp__