Program Listing for File joint-revolute-unaligned.hpp

Return to documentation for file (include/pinocchio/multibody/joint/joint-revolute-unaligned.hpp)

//
// Copyright (c) 2015-2019 CNRS INRIA
// Copyright (c) 2015-2016 Wandercraft, 86 rue de Paris 91400 Orsay, France.
//

#ifndef __pinocchio_joint_revolute_unaligned_hpp__
#define __pinocchio_joint_revolute_unaligned_hpp__

#include "pinocchio/fwd.hpp"
#include "pinocchio/multibody/joint/joint-base.hpp"
#include "pinocchio/multibody/constraint.hpp"
#include "pinocchio/spatial/inertia.hpp"
#include "pinocchio/math/matrix.hpp"

namespace pinocchio
{

  template<typename Scalar, int Options=0> struct MotionRevoluteUnalignedTpl;
  typedef MotionRevoluteUnalignedTpl<double> MotionRevoluteUnaligned;

  template<typename Scalar, int Options>
  struct SE3GroupAction< MotionRevoluteUnalignedTpl<Scalar,Options> >
  {
    typedef MotionTpl<Scalar,Options> ReturnType;
  };

  template<typename Scalar, int Options, typename MotionDerived>
  struct MotionAlgebraAction< MotionRevoluteUnalignedTpl<Scalar,Options>, MotionDerived>
  {
    typedef MotionTpl<Scalar,Options> ReturnType;
  };

  template<typename _Scalar, int _Options>
  struct traits< MotionRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    typedef _Scalar Scalar;
    enum { Options = _Options };
    typedef Eigen::Matrix<Scalar,3,1,Options> Vector3;
    typedef Eigen::Matrix<Scalar,6,1,Options> Vector6;
    typedef Eigen::Matrix<Scalar,4,4,Options> Matrix4;
    typedef Eigen::Matrix<Scalar,6,6,Options> Matrix6;
    typedef typename PINOCCHIO_EIGEN_REF_CONST_TYPE(Vector6) ToVectorConstReturnType;
    typedef typename PINOCCHIO_EIGEN_REF_TYPE(Vector6) ToVectorReturnType;
    typedef Vector3 AngularType;
    typedef Vector3 LinearType;
    typedef const Vector3 ConstAngularType;
    typedef const Vector3 ConstLinearType;
    typedef Matrix6 ActionMatrixType;
    typedef Matrix4 HomogeneousMatrixType;
    typedef MotionTpl<Scalar,Options> MotionPlain;
    typedef MotionPlain PlainReturnType;
    enum {
      LINEAR = 0,
      ANGULAR = 3
    };
  }; // traits MotionRevoluteUnalignedTpl

  template<typename _Scalar, int _Options>
  struct MotionRevoluteUnalignedTpl
  : MotionBase< MotionRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    MOTION_TYPEDEF_TPL(MotionRevoluteUnalignedTpl);

    MotionRevoluteUnalignedTpl() {}

    template<typename Vector3Like, typename OtherScalar>
    MotionRevoluteUnalignedTpl(const Eigen::MatrixBase<Vector3Like> & axis,
                               const OtherScalar & w)
    : m_axis(axis)
    , m_w(w)
    {}

    inline PlainReturnType plain() const
    {
      return PlainReturnType(PlainReturnType::Vector3::Zero(),
                             m_axis*m_w);
    }

    template<typename OtherScalar>
    MotionRevoluteUnalignedTpl __mult__(const OtherScalar & alpha) const
    {
      return MotionRevoluteUnalignedTpl(m_axis,alpha*m_w);
    }

    template<typename MotionDerived>
    inline void addTo(MotionDense<MotionDerived> & v) const
    {
      v.angular() += m_axis*m_w;
    }

    template<typename Derived>
    void setTo(MotionDense<Derived> & other) const
    {
      other.linear().setZero();
      other.angular().noalias() = m_axis*m_w;
    }

    template<typename S2, int O2, typename D2>
    void se3Action_impl(const SE3Tpl<S2,O2> & m, MotionDense<D2> & v) const
    {
      // Angular
      v.angular().noalias() = m_w * m.rotation() * m_axis;

      // Linear
      v.linear().noalias() = m.translation().cross(v.angular());
    }

    template<typename S2, int O2>
    MotionPlain se3Action_impl(const SE3Tpl<S2,O2> & m) const
    {
      MotionPlain res;
      se3Action_impl(m,res);
      return res;
    }

    template<typename S2, int O2, typename D2>
    void se3ActionInverse_impl(const SE3Tpl<S2,O2> & m, MotionDense<D2> & v) const
    {
      // Linear
      // TODO: use v.angular() as temporary variable
      Vector3 v3_tmp;
      v3_tmp.noalias() = m_axis.cross(m.translation());
      v3_tmp *= m_w;
      v.linear().noalias() = m.rotation().transpose() * v3_tmp;

      // Angular
      v.angular().noalias() = m.rotation().transpose() * m_axis;
      v.angular() *= m_w;
    }

    template<typename S2, int O2>
    MotionPlain se3ActionInverse_impl(const SE3Tpl<S2,O2> & m) const
    {
      MotionPlain res;
      se3ActionInverse_impl(m,res);
      return res;
    }

    template<typename M1, typename M2>
    void motionAction(const MotionDense<M1> & v, MotionDense<M2> & mout) const
    {
      // Linear
      mout.linear().noalias() = v.linear().cross(m_axis);
      mout.linear() *= m_w;

      // Angular
      mout.angular().noalias() = v.angular().cross(m_axis);
      mout.angular() *= m_w;
    }

    template<typename M1>
    MotionPlain motionAction(const MotionDense<M1> & v) const
    {
      MotionPlain res;
      motionAction(v,res);
      return res;
    }

    bool isEqual_impl(const MotionRevoluteUnalignedTpl & other) const
    {
      return m_axis == other.m_axis && m_w == other.m_w;
    }

    const Scalar & angularRate() const { return m_w; }
    Scalar & angularRate() { return m_w; }

    const Vector3 & axis() const { return m_axis; }
    Vector3 & axis() { return m_axis; }

  protected:
    Vector3 m_axis;
    Scalar m_w;

  }; // struct MotionRevoluteUnalignedTpl

  template<typename S1, int O1, typename MotionDerived>
  inline typename MotionDerived::MotionPlain
  operator+(const MotionRevoluteUnalignedTpl<S1,O1> & m1,
            const MotionDense<MotionDerived> & m2)
  {
    typename MotionDerived::MotionPlain res(m2);
    res += m1;
    return res;
  }

  template<typename MotionDerived, typename S2, int O2>
  inline typename MotionDerived::MotionPlain
  operator^(const MotionDense<MotionDerived> & m1,
            const MotionRevoluteUnalignedTpl<S2,O2> & m2)
  {
    return m2.motionAction(m1);
  }

  template<typename Scalar, int Options> struct ConstraintRevoluteUnalignedTpl;

  template<typename _Scalar, int _Options>
  struct traits< ConstraintRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    typedef _Scalar Scalar;
    enum { Options = _Options };
    enum {
      LINEAR = 0,
      ANGULAR = 3
    };
    typedef MotionRevoluteUnalignedTpl<Scalar,Options> JointMotion;
    typedef Eigen::Matrix<Scalar,1,1,Options> JointForce;
    typedef Eigen::Matrix<Scalar,6,1,Options> DenseBase;
    typedef DenseBase MatrixReturnType;
    typedef const DenseBase ConstMatrixReturnType;

    typedef Eigen::Matrix<Scalar,3,1,Options> Vector3;
  }; // traits ConstraintRevoluteUnalignedTpl

  template<typename Scalar, int Options>
  struct SE3GroupAction< ConstraintRevoluteUnalignedTpl<Scalar,Options> >
  { typedef Eigen::Matrix<Scalar,6,1,Options> ReturnType; };

  template<typename Scalar, int Options, typename MotionDerived>
  struct MotionAlgebraAction< ConstraintRevoluteUnalignedTpl<Scalar,Options>, MotionDerived >
  { typedef Eigen::Matrix<Scalar,6,1,Options> ReturnType; };

  template<typename Scalar, int Options, typename ForceDerived>
  struct ConstraintForceOp< ConstraintRevoluteUnalignedTpl<Scalar,Options>, ForceDerived>
  {
    typedef typename traits< ConstraintRevoluteUnalignedTpl<Scalar,Options> >::Vector3 Vector3;
    typedef Eigen::Matrix<typename PINOCCHIO_EIGEN_DOT_PRODUCT_RETURN_TYPE(Vector3,typename ForceDense<ForceDerived>::ConstAngularType),1,1,Options> ReturnType;
  };

  template<typename Scalar, int Options, typename ForceSet>
  struct ConstraintForceSetOp< ConstraintRevoluteUnalignedTpl<Scalar,Options>, ForceSet>
  {
    typedef typename traits< ConstraintRevoluteUnalignedTpl<Scalar,Options> >::Vector3 Vector3;
    typedef typename MatrixMatrixProduct<Eigen::Transpose<const Vector3>,
    typename Eigen::MatrixBase<const ForceSet>::template NRowsBlockXpr<3>::Type
    >::type ReturnType;
  };

  template<typename _Scalar, int _Options>
  struct ConstraintRevoluteUnalignedTpl
  : ConstraintBase< ConstraintRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    PINOCCHIO_CONSTRAINT_TYPEDEF_TPL(ConstraintRevoluteUnalignedTpl)

    enum { NV = 1 };

    typedef typename traits<ConstraintRevoluteUnalignedTpl>::Vector3 Vector3;

    ConstraintRevoluteUnalignedTpl() {}

    template<typename Vector3Like>
    ConstraintRevoluteUnalignedTpl(const Eigen::MatrixBase<Vector3Like> & axis)
    : m_axis(axis)
    {}

    template<typename Vector1Like>
    JointMotion __mult__(const Eigen::MatrixBase<Vector1Like> & v) const
    {
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector1Like,1);
      return JointMotion(m_axis,v[0]);
    }

    template<typename S1, int O1>
    typename SE3GroupAction<ConstraintRevoluteUnalignedTpl>::ReturnType
    se3Action(const SE3Tpl<S1,O1> & m) const
    {
      typedef typename SE3GroupAction<ConstraintRevoluteUnalignedTpl>::ReturnType ReturnType;

      /* X*S = [ R pxR ; 0 R ] [ 0 ; a ] = [ px(Ra) ; Ra ] */
      ReturnType res;
      res.template segment<3>(ANGULAR).noalias() = m.rotation() * m_axis;
      res.template segment<3>(LINEAR).noalias() = m.translation().cross(res.template segment<3>(ANGULAR));
      return res;
    }

    template<typename S1, int O1>
    typename SE3GroupAction<ConstraintRevoluteUnalignedTpl>::ReturnType
    se3ActionInverse(const SE3Tpl<S1,O1> & m) const
    {
      typedef typename SE3GroupAction<ConstraintRevoluteUnalignedTpl>::ReturnType ReturnType;

      ReturnType res;
      res.template segment<3>(ANGULAR).noalias() = m.rotation().transpose() * m_axis;
      res.template segment<3>(LINEAR).noalias() = -m.rotation().transpose() * m.translation().cross(m_axis);
      return res;
    }

    int nv_impl() const { return NV; }

    struct TransposeConst
    {
      const ConstraintRevoluteUnalignedTpl & ref;
      TransposeConst(const ConstraintRevoluteUnalignedTpl & ref) : ref(ref) {}

      template<typename ForceDerived>
      typename ConstraintForceOp<ConstraintRevoluteUnalignedTpl,ForceDerived>::ReturnType
      operator*(const ForceDense<ForceDerived> & f) const
      {
        typedef typename ConstraintForceOp<ConstraintRevoluteUnalignedTpl,ForceDerived>::ReturnType ReturnType;
        ReturnType res;
        res[0] = ref.axis().dot(f.angular());
        return res;
      }

      /* [CRBA]  MatrixBase operator* (Constraint::Transpose S, ForceSet::Block) */
      template<typename ForceSet>
      typename ConstraintForceSetOp<ConstraintRevoluteUnalignedTpl,ForceSet>::ReturnType
      operator*(const Eigen::MatrixBase<ForceSet> & F)
      {
        EIGEN_STATIC_ASSERT(ForceSet::RowsAtCompileTime==6,THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE)
        /* Return ax.T * F[3:end,:] */
        return ref.axis().transpose() * F.template middleRows<3>(ANGULAR);
      }

    };

    TransposeConst transpose() const { return TransposeConst(*this); }

    /* CRBA joint operators
     *   - ForceSet::Block = ForceSet
     *   - ForceSet operator* (Inertia Y,Constraint S)
     *   - MatrixBase operator* (Constraint::Transpose S, ForceSet::Block)
     *   - SE3::act(ForceSet::Block)
     */
    DenseBase matrix_impl() const
    {
      DenseBase S;
      S.template segment<3>(LINEAR).setZero();
      S.template segment<3>(ANGULAR) = m_axis;
      return S;
    }

    template<typename MotionDerived>
    typename MotionAlgebraAction<ConstraintRevoluteUnalignedTpl,MotionDerived>::ReturnType
    motionAction(const MotionDense<MotionDerived> & m) const
    {
      const typename MotionDerived::ConstLinearType v = m.linear();
      const typename MotionDerived::ConstAngularType w = m.angular();

      DenseBase res;
      res.template segment<3>(LINEAR).noalias() = v.cross(m_axis);
      res.template segment<3>(ANGULAR).noalias() = w.cross(m_axis);

      return res;
    }

    const Vector3 & axis() const { return m_axis; }
    Vector3 & axis() { return m_axis; }

    bool isEqual(const ConstraintRevoluteUnalignedTpl & other) const
    {
      return m_axis == other.m_axis;
    }

  protected:

    Vector3 m_axis;

  }; // struct ConstraintRevoluteUnalignedTpl

  template<typename S1, int O1,typename S2, int O2>
  struct MultiplicationOp<InertiaTpl<S1,O1>, ConstraintRevoluteUnalignedTpl<S2,O2> >
  {
    typedef Eigen::Matrix<S2,6,1,O2> ReturnType;
  };

  /* [CRBA] ForceSet operator* (Inertia Y,Constraint S) */
  namespace impl
  {
    template<typename S1, int O1, typename S2, int O2>
    struct LhsMultiplicationOp<InertiaTpl<S1,O1>, ConstraintRevoluteUnalignedTpl<S2,O2> >
    {
      typedef InertiaTpl<S1,O1> Inertia;
      typedef ConstraintRevoluteUnalignedTpl<S2,O2> Constraint;
      typedef typename MultiplicationOp<Inertia,Constraint>::ReturnType ReturnType;
      static inline ReturnType run(const Inertia & Y,
                                   const Constraint & cru)
      {
        ReturnType res;

        /* YS = [ m -mcx ; mcx I-mcxcx ] [ 0 ; w ] = [ mcxw ; Iw -mcxcxw ] */
        const typename Inertia::Scalar & m       = Y.mass();
        const typename Inertia::Vector3 & c      = Y.lever();
        const typename Inertia::Symmetric3 & I   = Y.inertia();

        res.template segment<3>(Inertia::LINEAR) = -m*c.cross(cru.axis());
        res.template segment<3>(Inertia::ANGULAR).noalias() = I*cru.axis();
        res.template segment<3>(Inertia::ANGULAR) += c.cross(res.template segment<3>(Inertia::LINEAR));

        return res;
      }
    };
  } // namespace impl

  template<typename M6Like, typename Scalar, int Options>
  struct MultiplicationOp<Eigen::MatrixBase<M6Like>, ConstraintRevoluteUnalignedTpl<Scalar,Options> >
  {
    typedef typename SizeDepType<3>::ColsReturn<M6Like>::ConstType M6LikeCols;
    typedef typename Eigen::internal::remove_const<M6LikeCols>::type M6LikeColsNonConst;

    typedef ConstraintRevoluteUnalignedTpl<Scalar,Options> Constraint;
    typedef typename Constraint::Vector3 Vector3;
    typedef const typename MatrixMatrixProduct<M6LikeColsNonConst,Vector3>::type ReturnType;
  };

  /* [ABA] operator* (Inertia Y,Constraint S) */
  namespace impl
  {
    template<typename M6Like, typename Scalar, int Options>
    struct LhsMultiplicationOp<Eigen::MatrixBase<M6Like>, ConstraintRevoluteUnalignedTpl<Scalar,Options> >
    {
      typedef ConstraintRevoluteUnalignedTpl<Scalar,Options> Constraint;
      typedef typename MultiplicationOp<Eigen::MatrixBase<M6Like>,Constraint>::ReturnType ReturnType;

      static inline ReturnType run(const Eigen::MatrixBase<M6Like> & Y,
                                   const Constraint & cru)
      {
        EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(M6Like,6,6);
        return Y.derived().template middleCols<3>(Constraint::ANGULAR) * cru.axis();
      }
    };
  } // namespace impl

  template<typename Scalar, int Options> struct JointRevoluteUnalignedTpl;

  template<typename _Scalar, int _Options>
  struct traits< JointRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    enum {
      NQ = 1,
      NV = 1
    };
    typedef _Scalar Scalar;
    enum { Options = _Options };
    typedef JointDataRevoluteUnalignedTpl<Scalar,Options> JointDataDerived;
    typedef JointModelRevoluteUnalignedTpl<Scalar,Options> JointModelDerived;
    typedef ConstraintRevoluteUnalignedTpl<Scalar,Options> Constraint_t;
    typedef SE3Tpl<Scalar,Options> Transformation_t;
    typedef MotionRevoluteUnalignedTpl<Scalar,Options> Motion_t;
    typedef MotionZeroTpl<Scalar,Options> Bias_t;

    // [ABA]
    typedef Eigen::Matrix<Scalar,6,NV,Options> U_t;
    typedef Eigen::Matrix<Scalar,NV,NV,Options> D_t;
    typedef Eigen::Matrix<Scalar,6,NV,Options> UD_t;

    PINOCCHIO_JOINT_DATA_BASE_ACCESSOR_DEFAULT_RETURN_TYPE

    typedef Eigen::Matrix<Scalar,NQ,1,Options> ConfigVector_t;
    typedef Eigen::Matrix<Scalar,NV,1,Options> TangentVector_t;

  };

  template<typename Scalar, int Options>
  struct traits< JointDataRevoluteUnalignedTpl<Scalar,Options> >
  { typedef JointRevoluteUnalignedTpl<Scalar,Options> JointDerived; };

  template<typename Scalar, int Options>
  struct traits <JointModelRevoluteUnalignedTpl<Scalar,Options> >
  { typedef JointRevoluteUnalignedTpl<Scalar,Options> JointDerived; };

  template<typename _Scalar, int _Options>
  struct JointDataRevoluteUnalignedTpl
  : public JointDataBase< JointDataRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    typedef JointRevoluteUnalignedTpl<_Scalar,_Options> JointDerived;
    PINOCCHIO_JOINT_DATA_TYPEDEF_TEMPLATE(JointDerived);
    PINOCCHIO_JOINT_DATA_BASE_DEFAULT_ACCESSOR

    Transformation_t M;
    Constraint_t S;
    Motion_t v;
    Bias_t c;

    // [ABA] specific data
    U_t U;
    D_t Dinv;
    UD_t UDinv;

    JointDataRevoluteUnalignedTpl()
    : M(Transformation_t::Identity())
    , S(Constraint_t::Vector3::Zero())
    , v(Constraint_t::Vector3::Zero(),(Scalar)0)
    , U(U_t::Zero())
    , Dinv(D_t::Zero())
    , UDinv(UD_t::Zero())
    {}

    template<typename Vector3Like>
    JointDataRevoluteUnalignedTpl(const Eigen::MatrixBase<Vector3Like> & axis)
    : M(Transformation_t::Identity())
    , S(axis)
    , v(axis,(Scalar)NAN)
    , U(U_t::Zero())
    , Dinv(D_t::Zero())
    , UDinv(UD_t::Zero())
    {}

    static std::string classname() { return std::string("JointDataRevoluteUnaligned"); }
    std::string shortname() const { return classname(); }

  }; // struct JointDataRevoluteUnalignedTpl

  PINOCCHIO_JOINT_CAST_TYPE_SPECIALIZATION(JointModelRevoluteUnalignedTpl);
  template<typename _Scalar, int _Options>
  struct JointModelRevoluteUnalignedTpl
  : public JointModelBase< JointModelRevoluteUnalignedTpl<_Scalar,_Options> >
  {
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    typedef JointRevoluteUnalignedTpl<_Scalar,_Options> JointDerived;
    PINOCCHIO_JOINT_TYPEDEF_TEMPLATE(JointDerived);
    typedef Eigen::Matrix<Scalar,3,1,_Options> Vector3;

    typedef JointModelBase<JointModelRevoluteUnalignedTpl> Base;
    using Base::id;
    using Base::idx_q;
    using Base::idx_v;
    using Base::setIndexes;

    JointModelRevoluteUnalignedTpl(): axis(Vector3::UnitX()) {}

    JointModelRevoluteUnalignedTpl(const Scalar & x,
                                   const Scalar & y,
                                   const Scalar & z)
    : axis(x,y,z)
    {
      axis.normalize();
      assert(isUnitary(axis) && "Rotation axis is not unitary");
    }

    template<typename Vector3Like>
    JointModelRevoluteUnalignedTpl(const Eigen::MatrixBase<Vector3Like> & axis)
    : axis(axis)
    {
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(Vector3Like);
      assert(isUnitary(axis) && "Rotation axis is not unitary");
    }

    JointDataDerived createData() const { return JointDataDerived(axis); }

    using Base::isEqual;
    bool isEqual(const JointModelRevoluteUnalignedTpl & other) const
    {
      return Base::isEqual(other) && axis == other.axis;
    }

    const std::vector<bool> hasConfigurationLimit() const
    {
      return {true};
    }

    const std::vector<bool> hasConfigurationLimitInTangent() const
    {
      return {true};
    }

    template<typename ConfigVector>
    void calc(JointDataDerived & data,
              const typename Eigen::MatrixBase<ConfigVector> & qs) const
    {
      typedef typename ConfigVector::Scalar OtherScalar;
      typedef Eigen::AngleAxis<Scalar> AngleAxis;

      const OtherScalar & q = qs[idx_q()];

      data.M.rotation(AngleAxis(q,axis).toRotationMatrix());
    }

    template<typename ConfigVector, typename TangentVector>
    void calc(JointDataDerived & data,
              const typename Eigen::MatrixBase<ConfigVector> & qs,
              const typename Eigen::MatrixBase<TangentVector> & vs) const
    {
      calc(data,qs.derived());

      data.v.angularRate() = static_cast<Scalar>(vs[idx_v()]);
    }

    template<typename Matrix6Like>
    void calc_aba(JointDataDerived & data, const Eigen::MatrixBase<Matrix6Like> & I, const bool update_I) const
    {
      data.U.noalias() = I.template middleCols<3>(Motion::ANGULAR) * axis;
      data.Dinv[0] = (Scalar)(1)/axis.dot(data.U.template segment<3>(Motion::ANGULAR));
      data.UDinv.noalias() = data.U * data.Dinv;

      if (update_I)
        PINOCCHIO_EIGEN_CONST_CAST(Matrix6Like,I) -= data.UDinv * data.U.transpose();
    }

    static std::string classname() { return std::string("JointModelRevoluteUnaligned"); }
    std::string shortname() const { return classname(); }

    template<typename NewScalar>
    JointModelRevoluteUnalignedTpl<NewScalar,Options> cast() const
    {
      typedef JointModelRevoluteUnalignedTpl<NewScalar,Options> ReturnType;
      ReturnType res(axis.template cast<NewScalar>());
      res.setIndexes(id(),idx_q(),idx_v());
      return res;
    }

    // data

    Vector3 axis;
  }; // struct JointModelRevoluteUnalignedTpl

} //namespace pinocchio

#include <boost/type_traits.hpp>

namespace boost
{
  template<typename Scalar, int Options>
  struct has_nothrow_constructor< ::pinocchio::JointModelRevoluteUnalignedTpl<Scalar,Options> >
  : public integral_constant<bool,true> {};

  template<typename Scalar, int Options>
  struct has_nothrow_copy< ::pinocchio::JointModelRevoluteUnalignedTpl<Scalar,Options> >
  : public integral_constant<bool,true> {};

  template<typename Scalar, int Options>
  struct has_nothrow_constructor< ::pinocchio::JointDataRevoluteUnalignedTpl<Scalar,Options> >
  : public integral_constant<bool,true> {};

  template<typename Scalar, int Options>
  struct has_nothrow_copy< ::pinocchio::JointDataRevoluteUnalignedTpl<Scalar,Options> >
  : public integral_constant<bool,true> {};
}


#endif // ifndef __pinocchio_joint_revolute_unaligned_hpp__