tmt5.cpp
Go to the documentation of this file.
00001 
00002 
00003 
00006 
00007 
00008 //#define WANT_STREAM
00009 
00010 #include "include.h"
00011 
00012 #include "newmat.h"
00013 
00014 #include "tmt.h"
00015 
00016 #ifdef use_namespace
00017 using namespace NEWMAT;
00018 #endif
00019 
00020 
00021 // **************************** test program ******************************
00022 
00023 
00024 
00025 ReturnMatrix Returner0(const GenericMatrix& GM)
00026 { Matrix M = GM; M.Release(); return M; }
00027 
00028 ReturnMatrix Returner1(const GenericMatrix& GM)
00029 { Matrix M = GM+1; M.Release(); return M; }
00030 
00031 ReturnMatrix Returner2(const GenericMatrix& GM)
00032 { UpperBandMatrix M = GM*2; M.Release(); return M; }
00033 
00034 ReturnMatrix Returner3(const GenericMatrix& GM)
00035 { LowerBandMatrix M = GM*3; M.Release(); return M; }
00036 
00037 ReturnMatrix Returner4(const GenericMatrix& GM)
00038 { SymmetricMatrix M = GM+4; M.Release(); return M; }
00039 
00040 ReturnMatrix Returner5(const GenericMatrix& GM)
00041 { SymmetricBandMatrix M = GM*5; M.Release(); return M; }
00042 
00043 ReturnMatrix Returner6(const GenericMatrix& GM)
00044 { BandMatrix M = GM*6; M.Release(); return M; }
00045 
00046 ReturnMatrix Returner7(const GenericMatrix& GM)
00047 { DiagonalMatrix M = GM*7; M.Release(); return M; }
00048 
00049 void trymat5()
00050 {
00051 //   cout << "\nFifth test of Matrix package\n";
00052    Tracer et("Fifth test of Matrix package");
00053    Tracer::PrintTrace();
00054 
00055    int i,j;
00056 
00057    Matrix A(5,6);
00058    for (i=1;i<=5;i++) for (j=1;j<=6;j++) A(i,j)=1+i*j+i*i+j*j;
00059    ColumnVector CV(6);
00060    for (i=1;i<=6;i++) CV(i)=i*i+3;
00061    ColumnVector CV2(5); for (i=1;i<=5;i++) CV2(i)=1.0;
00062    ColumnVector CV1=CV;
00063 
00064    {
00065       CV=A*CV;
00066       RowVector RV=CV.t(); // RowVector RV; RV=CV.t();
00067       RV=RV-1.0;
00068       CV=(RV*A).t()+A.t()*CV2; CV1=(A.t()*A)*CV1 - CV;
00069       Print(CV1);
00070    }
00071 
00072    CV1.ReSize(6);
00073    CV2.ReSize(6);
00074    CV.ReSize(6);
00075    for (i=1;i<=6;i++) { CV1(i)=i*3+1; CV2(i)=10-i; CV(i)=11+i*2; }
00076    ColumnVector CX=CV2-CV; { CX=CX+CV1; Print(CX); }
00077    Print(ColumnVector(CV1+CV2-CV));
00078    RowVector RV=CV.t(); RowVector RV1=CV1.t();
00079    RowVector R=RV-RV1; Print(RowVector(R-CV2.t()));
00080 
00081 // test loading of list
00082 
00083    RV.ReSize(10);
00084    for (i=1;i<=10;i++) RV(i) = i*i;
00085    RV1.ReSize(10);
00086    RV1 << 1 << 4 << 9 << 16 << 25 << 36 << 49 << 64 << 81 << 100; // << 121;
00087    Print(RowVector(RV-RV1));
00088 
00089    et.ReName("Fifth test of Matrix package - almost at end");
00090 
00091    Matrix X(2,3);
00092    X << 11 << 12 << 13
00093      << 21 << 22 << 23;
00094 
00095    Matrix Y = X.t();                 // check simple transpose
00096 
00097    X(1,1) -= 11; X(1,2) -= 12; X(1,3) -= 13;
00098    X(2,1) -= 21; X(2,2) -= 22; X(2,3) -= 23;
00099    Print(X);
00100 
00101    Y(1,1) -= 11; Y(2,1) -= 12; Y(3,1) -= 13;
00102    Y(1,2) -= 21; Y(2,2) -= 22; Y(3,2) -= 23;
00103    Print(Y);
00104 
00105    et.ReName("Fifth test of Matrix package - at end");
00106 
00107    RV = Returner1(RV)-1; Print(RowVector(RV-RV1));
00108    CV1 = Returner1(RV.t())-1; Print(ColumnVector(RV.t()-CV1));
00109 #ifndef DONT_DO_NRIC
00110    nricMatrix AA = A;
00111    X = Returner1(AA)-A-1; Print(X);
00112 #endif
00113    UpperTriangularMatrix UT(31);
00114    for (i=1; i<=31; i++) for (j=i; j<=31; j++) UT(i,j) = i+j+(i-j)*(i-2*j);
00115    UpperBandMatrix UB(31,5); UB.Inject(UT);
00116    LowerTriangularMatrix LT = UT.t();
00117    LowerBandMatrix LB(31,5); LB.Inject(LT);
00118    A = Returner0(UB)-LB.t(); Print(A);
00119    A = Returner2(UB).t()-LB*2; Print(A);
00120    A = Returner3(LB).t()-UB*3; Print(A);
00121    SymmetricMatrix SM; SM << (UT+LT);
00122    A = Returner4(SM)-UT-LT-4; Print(A);
00123    SymmetricBandMatrix SB(31,5); SB.Inject(SM);
00124    A = Returner5(SB)/5-UB-LB; Print(A);
00125    BandMatrix B = UB+LB*LB; A = LB;
00126    A = Returner6(B)/6 - UB - A*A; Print(A);
00127    DiagonalMatrix D; D << UT;
00128    D << (Returner7(D)/7 - UT); Print(D);
00129 
00130 //   cout << "\nEnd of fifth test\n";
00131 }
00132 
00133 
00134 


kni
Author(s): Martin Günther
autogenerated on Mon Aug 14 2017 02:44:13