Vocabulary.cpp
Go to the documentation of this file.
00001 /*
00002 Copyright (c) 2011-2014, Mathieu Labbe - IntRoLab - Universite de Sherbrooke
00003 All rights reserved.
00004 
00005 Redistribution and use in source and binary forms, with or without
00006 modification, are permitted provided that the following conditions are met:
00007     * Redistributions of source code must retain the above copyright
00008       notice, this list of conditions and the following disclaimer.
00009     * Redistributions in binary form must reproduce the above copyright
00010       notice, this list of conditions and the following disclaimer in the
00011       documentation and/or other materials provided with the distribution.
00012     * Neither the name of the Universite de Sherbrooke nor the
00013       names of its contributors may be used to endorse or promote products
00014       derived from this software without specific prior written permission.
00015 
00016 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00017 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
00018 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00019 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
00020 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
00021 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00022 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
00023 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00024 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00026 */
00027 
00028 #include "find_object/Settings.h"
00029 
00030 #include "find_object/utilite/ULogger.h"
00031 #include "Vocabulary.h"
00032 #include <QtCore/QVector>
00033 #include <stdio.h>
00034 #include <opencv2/gpu/gpu.hpp>
00035 
00036 namespace find_object {
00037 
00038 Vocabulary::Vocabulary()
00039 {
00040 }
00041 
00042 Vocabulary::~Vocabulary()
00043 {
00044 }
00045 
00046 void Vocabulary::clear()
00047 {
00048         indexedDescriptors_ = cv::Mat();
00049         notIndexedDescriptors_ = cv::Mat();
00050         wordToObjects_.clear();
00051         notIndexedWordIds_.clear();
00052 }
00053 
00054 void Vocabulary::save(QDataStream & streamPtr) const
00055 {
00056         if(!indexedDescriptors_.empty() && !wordToObjects_.empty())
00057         {
00058                 UASSERT(notIndexedDescriptors_.empty() && notIndexedWordIds_.empty());
00059 
00060                 // save index
00061                 streamPtr << wordToObjects_;
00062 
00063                 // save words
00064                 qint64 dataSize = indexedDescriptors_.elemSize()*indexedDescriptors_.cols*indexedDescriptors_.rows;
00065                 streamPtr << indexedDescriptors_.rows <<
00066                                 indexedDescriptors_.cols <<
00067                                 indexedDescriptors_.type() <<
00068                                 dataSize;
00069                 streamPtr << QByteArray((char*)indexedDescriptors_.data, dataSize);
00070         }
00071 }
00072 
00073 void Vocabulary::load(QDataStream & streamPtr)
00074 {
00075         // load index
00076         streamPtr >> wordToObjects_;
00077 
00078         // load words
00079         int rows,cols,type;
00080         qint64 dataSize;
00081         streamPtr >> rows >> cols >> type >> dataSize;
00082         QByteArray data;
00083         streamPtr >> data;
00084         indexedDescriptors_ = cv::Mat(rows, cols, type, data.data()).clone();
00085 
00086         update();
00087 }
00088 
00089 QMultiMap<int, int> Vocabulary::addWords(const cv::Mat & descriptors, int objectId, bool incremental)
00090 {
00091         QMultiMap<int, int> words;
00092         if (descriptors.empty())
00093         {
00094                 return words;
00095         }
00096 
00097         if(incremental)
00098         {
00099                 int k = 2;
00100                 cv::Mat results;
00101                 cv::Mat dists;
00102 
00103                 bool globalSearch = false;
00104                 if(!indexedDescriptors_.empty() && indexedDescriptors_.rows >= (int)k)
00105                 {
00106                         UASSERT(indexedDescriptors_.type() == descriptors.type() && indexedDescriptors_.cols == descriptors.cols);
00107                         this->search(descriptors, results, dists, k);
00108 
00109                         if( dists.type() == CV_32S )
00110                         {
00111                                 cv::Mat temp;
00112                                 dists.convertTo(temp, CV_32F);
00113                                 dists = temp;
00114                         }
00115 
00116                         globalSearch = true;
00117                 }
00118 
00119                 notIndexedWordIds_.reserve(notIndexedWordIds_.size() + descriptors.rows);
00120                 notIndexedDescriptors_.reserve(notIndexedDescriptors_.rows + descriptors.rows);
00121                 int matches = 0;
00122                 for(int i = 0; i < descriptors.rows; ++i)
00123                 {
00124                         QMultiMap<float, int> fullResults; // nearest descriptors sorted by distance
00125                         if(notIndexedDescriptors_.rows)
00126                         {
00127                                 UASSERT(notIndexedDescriptors_.type() == descriptors.type() && notIndexedDescriptors_.cols == descriptors.cols);
00128 
00129                                 // Check if this descriptor matches with a word not already added to the vocabulary
00130                                 // Do linear search only
00131                                 cv::Mat tmpResults;
00132                                 cv::Mat tmpDists;
00133                                 if(descriptors.type()==CV_8U)
00134                                 {
00135                                         //normType – One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
00136                                         //                       preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be
00137                                         //                       used with ORB, BRISK and BRIEF, NORM_HAMMING2 should be used with ORB
00138                                         //                       when WTA_K==3 or 4 (see ORB::ORB constructor description).
00139                                         int normType = cv::NORM_HAMMING;
00140                                         if(Settings::currentDescriptorType().compare("ORB") &&
00141                                                 (Settings::getFeature2D_ORB_WTA_K()==3 || Settings::getFeature2D_ORB_WTA_K()==4))
00142                                         {
00143                                                 normType = cv::NORM_HAMMING2;
00144                                         }
00145 
00146                                         cv::batchDistance( descriptors.row(i),
00147                                                                         notIndexedDescriptors_,
00148                                                                         tmpDists,
00149                                                                         CV_32S,
00150                                                                         tmpResults,
00151                                                                         normType,
00152                                                                         notIndexedDescriptors_.rows>=k?k:1,
00153                                                                         cv::Mat(),
00154                                                                         0,
00155                                                                         false);
00156                                 }
00157                                 else
00158                                 {
00159                                         cv::flann::Index tmpIndex;
00160                                         tmpIndex.build(notIndexedDescriptors_, cv::flann::LinearIndexParams(), Settings::getFlannDistanceType());
00161                                         tmpIndex.knnSearch(descriptors.row(i), tmpResults, tmpDists, notIndexedDescriptors_.rows>1?k:1, Settings::getFlannSearchParams());
00162                                 }
00163 
00164                                 if( tmpDists.type() == CV_32S )
00165                                 {
00166                                         cv::Mat temp;
00167                                         tmpDists.convertTo(temp, CV_32F);
00168                                         tmpDists = temp;
00169                                 }
00170 
00171                                 for(int j = 0; j < tmpResults.cols; ++j)
00172                                 {
00173                                         if(tmpResults.at<int>(0,j) >= 0)
00174                                         {
00175                                                 //printf("local i=%d, j=%d, tmpDist=%f tmpResult=%d\n", i ,j, tmpDists.at<float>(0,j), tmpResults.at<int>(0,j));
00176                                                 fullResults.insert(tmpDists.at<float>(0,j), notIndexedWordIds_.at(tmpResults.at<int>(0,j)));
00177                                         }
00178                                 }
00179                         }
00180 
00181                         if(globalSearch)
00182                         {
00183                                 for(int j=0; j<k; ++j)
00184                                 {
00185                                         if(results.at<int>(i,j) >= 0)
00186                                         {
00187                                                 //printf("global i=%d, j=%d, dist=%f\n", i ,j, dists.at<float>(i,j));
00188                                                 fullResults.insert(dists.at<float>(i,j), results.at<int>(i,j));
00189                                         }
00190                                 }
00191                         }
00192 
00193                         bool match = false;
00194                         // Apply NNDR
00195                         if(fullResults.size() >= 2 &&
00196                            fullResults.begin().key() <= Settings::getNearestNeighbor_4nndrRatio() * (++fullResults.begin()).key())
00197                         {
00198                                 match = true;
00199                         }
00200 
00201                         if(match)
00202                         {
00203                                 words.insert(fullResults.begin().value(), i);
00204                                 wordToObjects_.insert(fullResults.begin().value(), objectId);
00205                                 ++matches;
00206                         }
00207                         else
00208                         {
00209                                 //concatenate new words
00210                                 notIndexedWordIds_.push_back(indexedDescriptors_.rows + notIndexedDescriptors_.rows);
00211                                 notIndexedDescriptors_.push_back(descriptors.row(i));
00212                                 words.insert(notIndexedWordIds_.back(), i);
00213                                 wordToObjects_.insert(notIndexedWordIds_.back(), objectId);
00214                         }
00215                 }
00216         }
00217         else
00218         {
00219                 for(int i = 0; i < descriptors.rows; ++i)
00220                 {
00221                         wordToObjects_.insert(indexedDescriptors_.rows + notIndexedDescriptors_.rows+i, objectId);
00222                         words.insert(indexedDescriptors_.rows + notIndexedDescriptors_.rows+i, i);
00223                         notIndexedWordIds_.push_back(indexedDescriptors_.rows + notIndexedDescriptors_.rows+i);
00224                 }
00225 
00226                 //just concatenate descriptors
00227                 notIndexedDescriptors_.push_back(descriptors);
00228         }
00229 
00230         return words;
00231 }
00232 
00233 void Vocabulary::update()
00234 {
00235         if(!notIndexedDescriptors_.empty())
00236         {
00237                 if(!indexedDescriptors_.empty())
00238                 {
00239                         UASSERT(indexedDescriptors_.cols == notIndexedDescriptors_.cols &&
00240                                         indexedDescriptors_.type() == notIndexedDescriptors_.type() );
00241                 }
00242                 
00243                 //concatenate descriptors
00244                 indexedDescriptors_.push_back(notIndexedDescriptors_);
00245 
00246                 notIndexedDescriptors_ = cv::Mat();
00247                 notIndexedWordIds_.clear();
00248         }
00249 
00250         if(!indexedDescriptors_.empty() && !Settings::isBruteForceNearestNeighbor())
00251         {
00252                 cv::flann::IndexParams * params = Settings::createFlannIndexParams();
00253                 flannIndex_.build(indexedDescriptors_, *params, Settings::getFlannDistanceType());
00254                 delete params;
00255         }
00256 }
00257 
00258 void Vocabulary::search(const cv::Mat & descriptors, cv::Mat & results, cv::Mat & dists, int k)
00259 {
00260         if(!indexedDescriptors_.empty())
00261         {
00262                 UASSERT(descriptors.type() == indexedDescriptors_.type() && descriptors.cols == indexedDescriptors_.cols);
00263 
00264                 if(Settings::isBruteForceNearestNeighbor())
00265                 {
00266                         std::vector<std::vector<cv::DMatch> > matches;
00267                         if(Settings::getNearestNeighbor_BruteForce_gpu() && cv::gpu::getCudaEnabledDeviceCount())
00268                         {
00269                                 cv::gpu::GpuMat newDescriptorsGpu(descriptors);
00270                                 cv::gpu::GpuMat lastDescriptorsGpu(indexedDescriptors_);
00271                                 if(indexedDescriptors_.type()==CV_8U)
00272                                 {
00273                                         cv::gpu::BruteForceMatcher_GPU<cv::Hamming> gpuMatcher;
00274                                         gpuMatcher.knnMatch(newDescriptorsGpu, lastDescriptorsGpu, matches, k);
00275                                 }
00276                                 else
00277                                 {
00278                                         cv::gpu::BruteForceMatcher_GPU<cv::L2<float> > gpuMatcher;
00279                                         gpuMatcher.knnMatch(newDescriptorsGpu, lastDescriptorsGpu, matches, k);
00280                                 }
00281                         }
00282                         else
00283                         {
00284                                 cv::BFMatcher matcher(indexedDescriptors_.type()==CV_8U?cv::NORM_HAMMING:cv::NORM_L2);
00285                                 matcher.knnMatch(descriptors, indexedDescriptors_, matches, k);
00286                         }
00287 
00288                         //convert back to matrix style
00289                         results = cv::Mat(matches.size(), k, CV_32SC1);
00290                         dists = cv::Mat(matches.size(), k, CV_32FC1);
00291                         for(unsigned int i=0; i<matches.size(); ++i)
00292                         {
00293                                 for(int j=0; j<k; ++j)
00294                                 {
00295                                         results.at<int>(i, j) = matches[i].at(j).trainIdx;
00296                                         dists.at<float>(i, j) = matches[i].at(j).distance;
00297                                 }
00298                         }
00299                 }
00300                 else
00301                 {
00302                         flannIndex_.knnSearch(descriptors, results, dists, k, Settings::getFlannSearchParams());
00303                 }
00304 
00305                 if( dists.type() == CV_32S )
00306                 {
00307                         cv::Mat temp;
00308                         dists.convertTo(temp, CV_32F);
00309                         dists = temp;
00310                 }
00311         }
00312 }
00313 
00314 } // namespace find_object


find_object_2d
Author(s): Mathieu Labbe
autogenerated on Thu Feb 11 2016 22:57:56