Program Listing for File numpy-map.hpp

Return to documentation for file (include/eigenpy/numpy-map.hpp)

/*
 * Copyright 2014-2019, CNRS
 * Copyright 2018-2023, INRIA
 */

#ifndef __eigenpy_numpy_map_hpp__
#define __eigenpy_numpy_map_hpp__

#include "eigenpy/exception.hpp"
#include "eigenpy/fwd.hpp"
#include "eigenpy/stride.hpp"

namespace eigenpy {

template <typename MatType, typename InputScalar, int AlignmentValue,
          typename Stride, bool IsVector = MatType::IsVectorAtCompileTime>
struct numpy_map_impl_matrix;

template <typename EigenType, typename InputScalar, int AlignmentValue,
          typename Stride,
          typename BaseType = typename get_eigen_base_type<EigenType>::type>
struct numpy_map_impl;

template <typename MatType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl<MatType, InputScalar, AlignmentValue, Stride,
                      Eigen::MatrixBase<MatType> >
    : numpy_map_impl_matrix<MatType, InputScalar, AlignmentValue, Stride> {};

template <typename MatType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl<const MatType, InputScalar, AlignmentValue, Stride,
                      const Eigen::MatrixBase<MatType> >
    : numpy_map_impl_matrix<const MatType, InputScalar, AlignmentValue,
                            Stride> {};

template <typename MatType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl_matrix<MatType, InputScalar, AlignmentValue, Stride,
                             false> {
  typedef Eigen::Matrix<InputScalar, MatType::RowsAtCompileTime,
                        MatType::ColsAtCompileTime, MatType::Options>
      EquivalentInputMatrixType;
  typedef Eigen::Map<EquivalentInputMatrixType, AlignmentValue, Stride>
      EigenMap;

  static EigenMap map(PyArrayObject* pyArray, bool swap_dimensions = false) {
    enum {
      OuterStrideAtCompileTime = Stride::OuterStrideAtCompileTime,
      InnerStrideAtCompileTime = Stride::InnerStrideAtCompileTime,
    };

    assert(PyArray_NDIM(pyArray) == 2 || PyArray_NDIM(pyArray) == 1);

    const long int itemsize = PyArray_ITEMSIZE(pyArray);
    int inner_stride = -1, outer_stride = -1;
    int rows = -1, cols = -1;
    if (PyArray_NDIM(pyArray) == 2) {
      assert((PyArray_DIMS(pyArray)[0] < INT_MAX) &&
             (PyArray_DIMS(pyArray)[1] < INT_MAX) &&
             (PyArray_STRIDE(pyArray, 0) < INT_MAX) &&
             (PyArray_STRIDE(pyArray, 1) < INT_MAX));

      rows = (int)PyArray_DIMS(pyArray)[0];
      cols = (int)PyArray_DIMS(pyArray)[1];

      if (EquivalentInputMatrixType::IsRowMajor) {
        inner_stride = (int)PyArray_STRIDE(pyArray, 1) / (int)itemsize;
        outer_stride = (int)PyArray_STRIDE(pyArray, 0) / (int)itemsize;
      } else {
        inner_stride = (int)PyArray_STRIDE(pyArray, 0) / (int)itemsize;
        outer_stride = (int)PyArray_STRIDE(pyArray, 1) / (int)itemsize;
      }
    } else if (PyArray_NDIM(pyArray) == 1) {
      assert((PyArray_DIMS(pyArray)[0] < INT_MAX) &&
             (PyArray_STRIDE(pyArray, 0) < INT_MAX));

      if (!swap_dimensions) {
        rows = (int)PyArray_DIMS(pyArray)[0];
        cols = 1;

        if (EquivalentInputMatrixType::IsRowMajor) {
          outer_stride = (int)PyArray_STRIDE(pyArray, 0) / (int)itemsize;
          inner_stride = 0;
        } else {
          inner_stride = (int)PyArray_STRIDE(pyArray, 0) / (int)itemsize;
          outer_stride = 0;
        }
      } else {
        rows = 1;
        cols = (int)PyArray_DIMS(pyArray)[0];

        if (EquivalentInputMatrixType::IsRowMajor) {
          inner_stride = (int)PyArray_STRIDE(pyArray, 0) / (int)itemsize;
          outer_stride = 0;
        } else {
          inner_stride = 0;
          outer_stride = (int)PyArray_STRIDE(pyArray, 0) / (int)itemsize;
        }
      }
    }

    // Specific care for Eigen::Stride<-1,0>
    if (InnerStrideAtCompileTime == 0 &&
        OuterStrideAtCompileTime == Eigen::Dynamic) {
      outer_stride = std::max(inner_stride, outer_stride);
      inner_stride = 0;
    }

    Stride stride(
        OuterStrideAtCompileTime == Eigen::Dynamic ? outer_stride
                                                   : OuterStrideAtCompileTime,
        InnerStrideAtCompileTime == Eigen::Dynamic ? inner_stride
                                                   : InnerStrideAtCompileTime);

    if ((MatType::RowsAtCompileTime != rows) &&
        (MatType::RowsAtCompileTime != Eigen::Dynamic)) {
      throw eigenpy::Exception(
          "The number of rows does not fit with the matrix type.");
    }

    if ((MatType::ColsAtCompileTime != cols) &&
        (MatType::ColsAtCompileTime != Eigen::Dynamic)) {
      throw eigenpy::Exception(
          "The number of columns does not fit with the matrix type.");
    }

    InputScalar* pyData = reinterpret_cast<InputScalar*>(PyArray_DATA(pyArray));

    return EigenMap(pyData, rows, cols, stride);
  }
};

template <typename MatType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl_matrix<MatType, InputScalar, AlignmentValue, Stride,
                             true> {
  typedef Eigen::Matrix<InputScalar, MatType::RowsAtCompileTime,
                        MatType::ColsAtCompileTime, MatType::Options>
      EquivalentInputMatrixType;
  typedef Eigen::Map<EquivalentInputMatrixType, AlignmentValue, Stride>
      EigenMap;

  static EigenMap map(PyArrayObject* pyArray, bool swap_dimensions = false) {
    EIGENPY_UNUSED_VARIABLE(swap_dimensions);
    assert(PyArray_NDIM(pyArray) <= 2);

    int rowMajor;
    if (PyArray_NDIM(pyArray) == 1)
      rowMajor = 0;
    else if (PyArray_DIMS(pyArray)[0] == 0)
      rowMajor = 0;  // handle zero-size vector
    else if (PyArray_DIMS(pyArray)[1] == 0)
      rowMajor = 1;  // handle zero-size vector
    else
      rowMajor = (PyArray_DIMS(pyArray)[0] > PyArray_DIMS(pyArray)[1]) ? 0 : 1;

    assert(PyArray_DIMS(pyArray)[rowMajor] < INT_MAX);
    const int R = (int)PyArray_DIMS(pyArray)[rowMajor];
    const long int itemsize = PyArray_ITEMSIZE(pyArray);
    const int stride = (int)PyArray_STRIDE(pyArray, rowMajor) / (int)itemsize;

    if ((MatType::MaxSizeAtCompileTime != R) &&
        (MatType::MaxSizeAtCompileTime != Eigen::Dynamic)) {
      throw eigenpy::Exception(
          "The number of elements does not fit with the vector type.");
    }

    InputScalar* pyData = reinterpret_cast<InputScalar*>(PyArray_DATA(pyArray));

    assert(Stride(stride).inner() == stride &&
           "Stride should be a dynamic stride");
    return EigenMap(pyData, R, Stride(stride));
  }
};

#ifdef EIGENPY_WITH_TENSOR_SUPPORT

template <typename TensorType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl_tensor;

template <typename TensorType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl<TensorType, InputScalar, AlignmentValue, Stride,
                      Eigen::TensorBase<TensorType> >
    : numpy_map_impl_tensor<TensorType, InputScalar, AlignmentValue, Stride> {};

template <typename TensorType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl<const TensorType, InputScalar, AlignmentValue, Stride,
                      const Eigen::TensorBase<TensorType> >
    : numpy_map_impl_tensor<const TensorType, InputScalar, AlignmentValue,
                            Stride> {};

template <typename TensorType, typename InputScalar, int AlignmentValue,
          typename Stride>
struct numpy_map_impl_tensor {
  typedef TensorType Tensor;
  typedef typename Eigen::internal::traits<TensorType>::Index Index;
  static const int Options = Eigen::internal::traits<TensorType>::Options;
  static const int NumIndices = TensorType::NumIndices;

  typedef Eigen::Tensor<InputScalar, NumIndices, Options, Index>
      EquivalentInputTensorType;
  typedef typename EquivalentInputTensorType::Dimensions Dimensions;
  typedef Eigen::TensorMap<EquivalentInputTensorType, Options> EigenMap;

  static EigenMap map(PyArrayObject* pyArray, bool swap_dimensions = false) {
    EIGENPY_UNUSED_VARIABLE(swap_dimensions);
    assert(PyArray_NDIM(pyArray) == NumIndices || NumIndices == Eigen::Dynamic);

    Eigen::DSizes<Index, NumIndices> dimensions;
    for (int k = 0; k < PyArray_NDIM(pyArray); ++k)
      dimensions[k] = PyArray_DIMS(pyArray)[k];

    InputScalar* pyData = reinterpret_cast<InputScalar*>(PyArray_DATA(pyArray));
    return EigenMap(pyData, dimensions);
  }
};
#endif

/* Wrap a numpy::array with an Eigen::Map. No memory copy. */
template <typename EigenType, typename InputScalar,
          int AlignmentValue = EIGENPY_NO_ALIGNMENT_VALUE,
          typename Stride = typename StrideType<EigenType>::type>
struct NumpyMap
    : numpy_map_impl<EigenType, InputScalar, AlignmentValue, Stride> {};

}  // namespace eigenpy

#endif  // define __eigenpy_numpy_map_hpp__