Program Listing for File octree.h
↰ Return to documentation for file (include/coal/octree.h
)
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011-2014, Willow Garage, Inc.
* Copyright (c) 2014-2015, Open Source Robotics Foundation
* Copyright (c) 2022-2024, Inria
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef COAL_OCTREE_H
#define COAL_OCTREE_H
#include <algorithm>
#include <octomap/octomap.h>
#include "coal/fwd.hh"
#include "coal/BV/AABB.h"
#include "coal/collision_object.h"
namespace coal {
class COAL_DLLAPI OcTree : public CollisionGeometry {
protected:
shared_ptr<const octomap::OcTree> tree;
CoalScalar default_occupancy;
CoalScalar occupancy_threshold;
CoalScalar free_threshold;
public:
typedef octomap::OcTreeNode OcTreeNode;
explicit OcTree(CoalScalar resolution)
: tree(shared_ptr<const octomap::OcTree>(
new octomap::OcTree(resolution))) {
default_occupancy = tree->getOccupancyThres();
// default occupancy/free threshold is consistent with default setting from
// octomap
occupancy_threshold = tree->getOccupancyThres();
free_threshold = 0;
}
explicit OcTree(const shared_ptr<const octomap::OcTree>& tree_)
: tree(tree_) {
default_occupancy = tree->getOccupancyThres();
// default occupancy/free threshold is consistent with default setting from
// octomap
occupancy_threshold = tree->getOccupancyThres();
free_threshold = 0;
}
OcTree(const OcTree& other)
: CollisionGeometry(other),
tree(other.tree),
default_occupancy(other.default_occupancy),
occupancy_threshold(other.occupancy_threshold),
free_threshold(other.free_threshold) {}
OcTree* clone() const { return new OcTree(*this); }
shared_ptr<const octomap::OcTree> getTree() const { return tree; }
void exportAsObjFile(const std::string& filename) const;
void computeLocalAABB() {
typedef Eigen::Matrix<float, 3, 1> Vec3sloat;
Vec3sloat max_extent, min_extent;
octomap::OcTree::iterator it =
tree->begin((unsigned char)tree->getTreeDepth());
octomap::OcTree::iterator end = tree->end();
if (it == end) return;
{
const octomap::point3d& coord =
it.getCoordinate(); // getCoordinate returns a copy
max_extent = min_extent = Eigen::Map<const Vec3sloat>(&coord.x());
for (++it; it != end; ++it) {
const octomap::point3d& coord = it.getCoordinate();
const Vec3sloat pos = Eigen::Map<const Vec3sloat>(&coord.x());
max_extent = max_extent.array().max(pos.array());
min_extent = min_extent.array().min(pos.array());
}
}
// Account for the size of the boxes.
const CoalScalar resolution = tree->getResolution();
max_extent.array() += float(resolution / 2.);
min_extent.array() -= float(resolution / 2.);
aabb_local =
AABB(min_extent.cast<CoalScalar>(), max_extent.cast<CoalScalar>());
aabb_center = aabb_local.center();
aabb_radius = (aabb_local.min_ - aabb_center).norm();
}
AABB getRootBV() const {
CoalScalar delta = (1 << tree->getTreeDepth()) * tree->getResolution() / 2;
// std::cout << "octree size " << delta << std::endl;
return AABB(Vec3s(-delta, -delta, -delta), Vec3s(delta, delta, delta));
}
unsigned int getTreeDepth() const { return tree->getTreeDepth(); }
unsigned long size() const { return tree->size(); }
CoalScalar getResolution() const { return tree->getResolution(); }
OcTreeNode* getRoot() const { return tree->getRoot(); }
bool isNodeOccupied(const OcTreeNode* node) const {
// return tree->isNodeOccupied(node);
return node->getOccupancy() >= occupancy_threshold;
}
bool isNodeFree(const OcTreeNode* node) const {
// return false; // default no definitely free node
return node->getOccupancy() <= free_threshold;
}
bool isNodeUncertain(const OcTreeNode* node) const {
return (!isNodeOccupied(node)) && (!isNodeFree(node));
}
std::vector<Vec6s> toBoxes() const {
std::vector<Vec6s> boxes;
boxes.reserve(tree->size() / 2);
for (octomap::OcTree::iterator
it = tree->begin((unsigned char)tree->getTreeDepth()),
end = tree->end();
it != end; ++it) {
// if(tree->isNodeOccupied(*it))
if (isNodeOccupied(&*it)) {
CoalScalar x = it.getX();
CoalScalar y = it.getY();
CoalScalar z = it.getZ();
CoalScalar size = it.getSize();
CoalScalar c = (*it).getOccupancy();
CoalScalar t = tree->getOccupancyThres();
Vec6s box;
box << x, y, z, size, c, t;
boxes.push_back(box);
}
}
return boxes;
}
std::vector<uint8_t> tobytes() const {
typedef Eigen::Matrix<float, 3, 1> Vec3sloat;
const size_t total_size = (tree->size() * sizeof(CoalScalar) * 3) / 2;
std::vector<uint8_t> bytes;
bytes.reserve(total_size);
for (octomap::OcTree::iterator
it = tree->begin((unsigned char)tree->getTreeDepth()),
end = tree->end();
it != end; ++it) {
const Vec3s box_pos =
Eigen::Map<Vec3sloat>(&it.getCoordinate().x()).cast<CoalScalar>();
if (isNodeOccupied(&*it))
std::copy(box_pos.data(), box_pos.data() + sizeof(CoalScalar) * 3,
std::back_inserter(bytes));
}
return bytes;
}
CoalScalar getOccupancyThres() const { return occupancy_threshold; }
CoalScalar getFreeThres() const { return free_threshold; }
CoalScalar getDefaultOccupancy() const { return default_occupancy; }
void setCellDefaultOccupancy(CoalScalar d) { default_occupancy = d; }
void setOccupancyThres(CoalScalar d) { occupancy_threshold = d; }
void setFreeThres(CoalScalar d) { free_threshold = d; }
OcTreeNode* getNodeChild(OcTreeNode* node, unsigned int childIdx) {
#if OCTOMAP_VERSION_AT_LEAST(1, 8, 0)
return tree->getNodeChild(node, childIdx);
#else
return node->getChild(childIdx);
#endif
}
const OcTreeNode* getNodeChild(const OcTreeNode* node,
unsigned int childIdx) const {
#if OCTOMAP_VERSION_AT_LEAST(1, 8, 0)
return tree->getNodeChild(node, childIdx);
#else
return node->getChild(childIdx);
#endif
}
bool nodeChildExists(const OcTreeNode* node, unsigned int childIdx) const {
#if OCTOMAP_VERSION_AT_LEAST(1, 8, 0)
return tree->nodeChildExists(node, childIdx);
#else
return node->childExists(childIdx);
#endif
}
bool nodeHasChildren(const OcTreeNode* node) const {
#if OCTOMAP_VERSION_AT_LEAST(1, 8, 0)
return tree->nodeHasChildren(node);
#else
return node->hasChildren();
#endif
}
OBJECT_TYPE getObjectType() const { return OT_OCTREE; }
NODE_TYPE getNodeType() const { return GEOM_OCTREE; }
private:
virtual bool isEqual(const CollisionGeometry& _other) const {
const OcTree* other_ptr = dynamic_cast<const OcTree*>(&_other);
if (other_ptr == nullptr) return false;
const OcTree& other = *other_ptr;
return (tree.get() == other.tree.get() || toBoxes() == other.toBoxes()) &&
default_occupancy == other.default_occupancy &&
occupancy_threshold == other.occupancy_threshold &&
free_threshold == other.free_threshold;
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
static inline void computeChildBV(const AABB& root_bv, unsigned int i,
AABB& child_bv) {
if (i & 1) {
child_bv.min_[0] = (root_bv.min_[0] + root_bv.max_[0]) * 0.5;
child_bv.max_[0] = root_bv.max_[0];
} else {
child_bv.min_[0] = root_bv.min_[0];
child_bv.max_[0] = (root_bv.min_[0] + root_bv.max_[0]) * 0.5;
}
if (i & 2) {
child_bv.min_[1] = (root_bv.min_[1] + root_bv.max_[1]) * 0.5;
child_bv.max_[1] = root_bv.max_[1];
} else {
child_bv.min_[1] = root_bv.min_[1];
child_bv.max_[1] = (root_bv.min_[1] + root_bv.max_[1]) * 0.5;
}
if (i & 4) {
child_bv.min_[2] = (root_bv.min_[2] + root_bv.max_[2]) * 0.5;
child_bv.max_[2] = root_bv.max_[2];
} else {
child_bv.min_[2] = root_bv.min_[2];
child_bv.max_[2] = (root_bv.min_[2] + root_bv.max_[2]) * 0.5;
}
}
COAL_DLLAPI OcTreePtr_t
makeOctree(const Eigen::Matrix<CoalScalar, Eigen::Dynamic, 3>& point_cloud,
const CoalScalar resolution);
} // namespace coal
#endif