00001 /* ztrt03.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ztrt03_(char *uplo, char *trans, char *diag, integer *n, 00021 integer *nrhs, doublecomplex *a, integer *lda, doublereal *scale, 00022 doublereal *cnorm, doublereal *tscal, doublecomplex *x, integer *ldx, 00023 doublecomplex *b, integer *ldb, doublecomplex *work, doublereal * 00024 resid) 00025 { 00026 /* System generated locals */ 00027 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 doublecomplex z__1; 00030 00031 /* Builtin functions */ 00032 double z_abs(doublecomplex *); 00033 00034 /* Local variables */ 00035 integer j, ix; 00036 doublereal eps, err; 00037 extern logical lsame_(char *, char *); 00038 doublereal xscal, tnorm, xnorm; 00039 extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 00040 doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 00041 doublecomplex *, integer *, doublecomplex *, integer *), ztrmv_( 00042 char *, char *, char *, integer *, doublecomplex *, integer *, 00043 doublecomplex *, integer *); 00044 extern doublereal dlamch_(char *); 00045 extern /* Subroutine */ int zdscal_(integer *, doublereal *, 00046 doublecomplex *, integer *); 00047 extern integer izamax_(integer *, doublecomplex *, integer *); 00048 doublereal smlnum; 00049 00050 00051 /* -- LAPACK test routine (version 3.1) -- */ 00052 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00053 /* November 2006 */ 00054 00055 /* .. Scalar Arguments .. */ 00056 /* .. */ 00057 /* .. Array Arguments .. */ 00058 /* .. */ 00059 00060 /* Purpose */ 00061 /* ======= */ 00062 00063 /* ZTRT03 computes the residual for the solution to a scaled triangular */ 00064 /* system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b. */ 00065 /* Here A is a triangular matrix, A**T denotes the transpose of A, A**H */ 00066 /* denotes the conjugate transpose of A, s is a scalar, and x and b are */ 00067 /* N by NRHS matrices. The test ratio is the maximum over the number of */ 00068 /* right hand sides of */ 00069 /* norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00070 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00071 00072 /* Arguments */ 00073 /* ========= */ 00074 00075 /* UPLO (input) CHARACTER*1 */ 00076 /* Specifies whether the matrix A is upper or lower triangular. */ 00077 /* = 'U': Upper triangular */ 00078 /* = 'L': Lower triangular */ 00079 00080 /* TRANS (input) CHARACTER*1 */ 00081 /* Specifies the operation applied to A. */ 00082 /* = 'N': A *x = s*b (No transpose) */ 00083 /* = 'T': A**T *x = s*b (Transpose) */ 00084 /* = 'C': A**H *x = s*b (Conjugate transpose) */ 00085 00086 /* DIAG (input) CHARACTER*1 */ 00087 /* Specifies whether or not the matrix A is unit triangular. */ 00088 /* = 'N': Non-unit triangular */ 00089 /* = 'U': Unit triangular */ 00090 00091 /* N (input) INTEGER */ 00092 /* The order of the matrix A. N >= 0. */ 00093 00094 /* NRHS (input) INTEGER */ 00095 /* The number of right hand sides, i.e., the number of columns */ 00096 /* of the matrices X and B. NRHS >= 0. */ 00097 00098 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00099 /* The triangular matrix A. If UPLO = 'U', the leading n by n */ 00100 /* upper triangular part of the array A contains the upper */ 00101 /* triangular matrix, and the strictly lower triangular part of */ 00102 /* A is not referenced. If UPLO = 'L', the leading n by n lower */ 00103 /* triangular part of the array A contains the lower triangular */ 00104 /* matrix, and the strictly upper triangular part of A is not */ 00105 /* referenced. If DIAG = 'U', the diagonal elements of A are */ 00106 /* also not referenced and are assumed to be 1. */ 00107 00108 /* LDA (input) INTEGER */ 00109 /* The leading dimension of the array A. LDA >= max(1,N). */ 00110 00111 /* SCALE (input) DOUBLE PRECISION */ 00112 /* The scaling factor s used in solving the triangular system. */ 00113 00114 /* CNORM (input) DOUBLE PRECISION array, dimension (N) */ 00115 /* The 1-norms of the columns of A, not counting the diagonal. */ 00116 00117 /* TSCAL (input) DOUBLE PRECISION */ 00118 /* The scaling factor used in computing the 1-norms in CNORM. */ 00119 /* CNORM actually contains the column norms of TSCAL*A. */ 00120 00121 /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ 00122 /* The computed solution vectors for the system of linear */ 00123 /* equations. */ 00124 00125 /* LDX (input) INTEGER */ 00126 /* The leading dimension of the array X. LDX >= max(1,N). */ 00127 00128 /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ 00129 /* The right hand side vectors for the system of linear */ 00130 /* equations. */ 00131 00132 /* LDB (input) INTEGER */ 00133 /* The leading dimension of the array B. LDB >= max(1,N). */ 00134 00135 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00136 00137 /* RESID (output) DOUBLE PRECISION */ 00138 /* The maximum over the number of right hand sides of */ 00139 /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ 00140 00141 /* ===================================================================== */ 00142 00143 /* .. Parameters .. */ 00144 /* .. */ 00145 /* .. Local Scalars .. */ 00146 /* .. */ 00147 /* .. External Functions .. */ 00148 /* .. */ 00149 /* .. External Subroutines .. */ 00150 /* .. */ 00151 /* .. Intrinsic Functions .. */ 00152 /* .. */ 00153 /* .. Executable Statements .. */ 00154 00155 /* Quick exit if N = 0 */ 00156 00157 /* Parameter adjustments */ 00158 a_dim1 = *lda; 00159 a_offset = 1 + a_dim1; 00160 a -= a_offset; 00161 --cnorm; 00162 x_dim1 = *ldx; 00163 x_offset = 1 + x_dim1; 00164 x -= x_offset; 00165 b_dim1 = *ldb; 00166 b_offset = 1 + b_dim1; 00167 b -= b_offset; 00168 --work; 00169 00170 /* Function Body */ 00171 if (*n <= 0 || *nrhs <= 0) { 00172 *resid = 0.; 00173 return 0; 00174 } 00175 eps = dlamch_("Epsilon"); 00176 smlnum = dlamch_("Safe minimum"); 00177 00178 /* Compute the norm of the triangular matrix A using the column */ 00179 /* norms already computed by ZLATRS. */ 00180 00181 tnorm = 0.; 00182 if (lsame_(diag, "N")) { 00183 i__1 = *n; 00184 for (j = 1; j <= i__1; ++j) { 00185 /* Computing MAX */ 00186 d__1 = tnorm, d__2 = *tscal * z_abs(&a[j + j * a_dim1]) + cnorm[j] 00187 ; 00188 tnorm = max(d__1,d__2); 00189 /* L10: */ 00190 } 00191 } else { 00192 i__1 = *n; 00193 for (j = 1; j <= i__1; ++j) { 00194 /* Computing MAX */ 00195 d__1 = tnorm, d__2 = *tscal + cnorm[j]; 00196 tnorm = max(d__1,d__2); 00197 /* L20: */ 00198 } 00199 } 00200 00201 /* Compute the maximum over the number of right hand sides of */ 00202 /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ 00203 00204 *resid = 0.; 00205 i__1 = *nrhs; 00206 for (j = 1; j <= i__1; ++j) { 00207 zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00208 ix = izamax_(n, &work[1], &c__1); 00209 /* Computing MAX */ 00210 d__1 = 1., d__2 = z_abs(&x[ix + j * x_dim1]); 00211 xnorm = max(d__1,d__2); 00212 xscal = 1. / xnorm / (doublereal) (*n); 00213 zdscal_(n, &xscal, &work[1], &c__1); 00214 ztrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1); 00215 d__1 = -(*scale) * xscal; 00216 z__1.r = d__1, z__1.i = 0.; 00217 zaxpy_(n, &z__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00218 ix = izamax_(n, &work[1], &c__1); 00219 err = *tscal * z_abs(&work[ix]); 00220 ix = izamax_(n, &x[j * x_dim1 + 1], &c__1); 00221 xnorm = z_abs(&x[ix + j * x_dim1]); 00222 if (err * smlnum <= xnorm) { 00223 if (xnorm > 0.) { 00224 err /= xnorm; 00225 } 00226 } else { 00227 if (err > 0.) { 00228 err = 1. / eps; 00229 } 00230 } 00231 if (err * smlnum <= tnorm) { 00232 if (tnorm > 0.) { 00233 err /= tnorm; 00234 } 00235 } else { 00236 if (err > 0.) { 00237 err = 1. / eps; 00238 } 00239 } 00240 *resid = max(*resid,err); 00241 /* L30: */ 00242 } 00243 00244 return 0; 00245 00246 /* End of ZTRT03 */ 00247 00248 } /* ztrt03_ */