ztrsyl.c
Go to the documentation of this file.
00001 /* ztrsyl.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int ztrsyl_(char *trana, char *tranb, integer *isgn, integer 
00021         *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, 
00022         integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale, 
00023         integer *info)
00024 {
00025     /* System generated locals */
00026     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
00027             i__3, i__4;
00028     doublereal d__1, d__2;
00029     doublecomplex z__1, z__2, z__3, z__4;
00030 
00031     /* Builtin functions */
00032     double d_imag(doublecomplex *);
00033     void d_cnjg(doublecomplex *, doublecomplex *);
00034 
00035     /* Local variables */
00036     integer j, k, l;
00037     doublecomplex a11;
00038     doublereal db;
00039     doublecomplex x11;
00040     doublereal da11;
00041     doublecomplex vec;
00042     doublereal dum[1], eps, sgn, smin;
00043     doublecomplex suml, sumr;
00044     extern logical lsame_(char *, char *);
00045     extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
00046             doublecomplex *, integer *, doublecomplex *, integer *), zdotu_(
00047             doublecomplex *, integer *, doublecomplex *, integer *, 
00048             doublecomplex *, integer *);
00049     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
00050     extern doublereal dlamch_(char *);
00051     doublereal scaloc;
00052     extern /* Subroutine */ int xerbla_(char *, integer *);
00053     extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
00054             integer *, doublereal *);
00055     doublereal bignum;
00056     extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
00057             doublecomplex *, integer *);
00058     extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *, 
00059              doublecomplex *);
00060     logical notrna, notrnb;
00061     doublereal smlnum;
00062 
00063 
00064 /*  -- LAPACK routine (version 3.2) -- */
00065 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00066 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00067 /*     November 2006 */
00068 
00069 /*     .. Scalar Arguments .. */
00070 /*     .. */
00071 /*     .. Array Arguments .. */
00072 /*     .. */
00073 
00074 /*  Purpose */
00075 /*  ======= */
00076 
00077 /*  ZTRSYL solves the complex Sylvester matrix equation: */
00078 
00079 /*     op(A)*X + X*op(B) = scale*C or */
00080 /*     op(A)*X - X*op(B) = scale*C, */
00081 
00082 /*  where op(A) = A or A**H, and A and B are both upper triangular. A is */
00083 /*  M-by-M and B is N-by-N; the right hand side C and the solution X are */
00084 /*  M-by-N; and scale is an output scale factor, set <= 1 to avoid */
00085 /*  overflow in X. */
00086 
00087 /*  Arguments */
00088 /*  ========= */
00089 
00090 /*  TRANA   (input) CHARACTER*1 */
00091 /*          Specifies the option op(A): */
00092 /*          = 'N': op(A) = A    (No transpose) */
00093 /*          = 'C': op(A) = A**H (Conjugate transpose) */
00094 
00095 /*  TRANB   (input) CHARACTER*1 */
00096 /*          Specifies the option op(B): */
00097 /*          = 'N': op(B) = B    (No transpose) */
00098 /*          = 'C': op(B) = B**H (Conjugate transpose) */
00099 
00100 /*  ISGN    (input) INTEGER */
00101 /*          Specifies the sign in the equation: */
00102 /*          = +1: solve op(A)*X + X*op(B) = scale*C */
00103 /*          = -1: solve op(A)*X - X*op(B) = scale*C */
00104 
00105 /*  M       (input) INTEGER */
00106 /*          The order of the matrix A, and the number of rows in the */
00107 /*          matrices X and C. M >= 0. */
00108 
00109 /*  N       (input) INTEGER */
00110 /*          The order of the matrix B, and the number of columns in the */
00111 /*          matrices X and C. N >= 0. */
00112 
00113 /*  A       (input) COMPLEX*16 array, dimension (LDA,M) */
00114 /*          The upper triangular matrix A. */
00115 
00116 /*  LDA     (input) INTEGER */
00117 /*          The leading dimension of the array A. LDA >= max(1,M). */
00118 
00119 /*  B       (input) COMPLEX*16 array, dimension (LDB,N) */
00120 /*          The upper triangular matrix B. */
00121 
00122 /*  LDB     (input) INTEGER */
00123 /*          The leading dimension of the array B. LDB >= max(1,N). */
00124 
00125 /*  C       (input/output) COMPLEX*16 array, dimension (LDC,N) */
00126 /*          On entry, the M-by-N right hand side matrix C. */
00127 /*          On exit, C is overwritten by the solution matrix X. */
00128 
00129 /*  LDC     (input) INTEGER */
00130 /*          The leading dimension of the array C. LDC >= max(1,M) */
00131 
00132 /*  SCALE   (output) DOUBLE PRECISION */
00133 /*          The scale factor, scale, set <= 1 to avoid overflow in X. */
00134 
00135 /*  INFO    (output) INTEGER */
00136 /*          = 0: successful exit */
00137 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00138 /*          = 1: A and B have common or very close eigenvalues; perturbed */
00139 /*               values were used to solve the equation (but the matrices */
00140 /*               A and B are unchanged). */
00141 
00142 /*  ===================================================================== */
00143 
00144 /*     .. Parameters .. */
00145 /*     .. */
00146 /*     .. Local Scalars .. */
00147 /*     .. */
00148 /*     .. Local Arrays .. */
00149 /*     .. */
00150 /*     .. External Functions .. */
00151 /*     .. */
00152 /*     .. External Subroutines .. */
00153 /*     .. */
00154 /*     .. Intrinsic Functions .. */
00155 /*     .. */
00156 /*     .. Executable Statements .. */
00157 
00158 /*     Decode and Test input parameters */
00159 
00160     /* Parameter adjustments */
00161     a_dim1 = *lda;
00162     a_offset = 1 + a_dim1;
00163     a -= a_offset;
00164     b_dim1 = *ldb;
00165     b_offset = 1 + b_dim1;
00166     b -= b_offset;
00167     c_dim1 = *ldc;
00168     c_offset = 1 + c_dim1;
00169     c__ -= c_offset;
00170 
00171     /* Function Body */
00172     notrna = lsame_(trana, "N");
00173     notrnb = lsame_(tranb, "N");
00174 
00175     *info = 0;
00176     if (! notrna && ! lsame_(trana, "C")) {
00177         *info = -1;
00178     } else if (! notrnb && ! lsame_(tranb, "C")) {
00179         *info = -2;
00180     } else if (*isgn != 1 && *isgn != -1) {
00181         *info = -3;
00182     } else if (*m < 0) {
00183         *info = -4;
00184     } else if (*n < 0) {
00185         *info = -5;
00186     } else if (*lda < max(1,*m)) {
00187         *info = -7;
00188     } else if (*ldb < max(1,*n)) {
00189         *info = -9;
00190     } else if (*ldc < max(1,*m)) {
00191         *info = -11;
00192     }
00193     if (*info != 0) {
00194         i__1 = -(*info);
00195         xerbla_("ZTRSYL", &i__1);
00196         return 0;
00197     }
00198 
00199 /*     Quick return if possible */
00200 
00201     *scale = 1.;
00202     if (*m == 0 || *n == 0) {
00203         return 0;
00204     }
00205 
00206 /*     Set constants to control overflow */
00207 
00208     eps = dlamch_("P");
00209     smlnum = dlamch_("S");
00210     bignum = 1. / smlnum;
00211     dlabad_(&smlnum, &bignum);
00212     smlnum = smlnum * (doublereal) (*m * *n) / eps;
00213     bignum = 1. / smlnum;
00214 /* Computing MAX */
00215     d__1 = smlnum, d__2 = eps * zlange_("M", m, m, &a[a_offset], lda, dum), d__1 = max(d__1,d__2), d__2 = eps * zlange_("M", n, n, 
00216             &b[b_offset], ldb, dum);
00217     smin = max(d__1,d__2);
00218     sgn = (doublereal) (*isgn);
00219 
00220     if (notrna && notrnb) {
00221 
00222 /*        Solve    A*X + ISGN*X*B = scale*C. */
00223 
00224 /*        The (K,L)th block of X is determined starting from */
00225 /*        bottom-left corner column by column by */
00226 
00227 /*            A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
00228 
00229 /*        Where */
00230 /*                    M                        L-1 */
00231 /*          R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
00232 /*                  I=K+1                      J=1 */
00233 
00234         i__1 = *n;
00235         for (l = 1; l <= i__1; ++l) {
00236             for (k = *m; k >= 1; --k) {
00237 
00238                 i__2 = *m - k;
00239 /* Computing MIN */
00240                 i__3 = k + 1;
00241 /* Computing MIN */
00242                 i__4 = k + 1;
00243                 zdotu_(&z__1, &i__2, &a[k + min(i__3, *m)* a_dim1], lda, &c__[
00244                         min(i__4, *m)+ l * c_dim1], &c__1);
00245                 suml.r = z__1.r, suml.i = z__1.i;
00246                 i__2 = l - 1;
00247                 zdotu_(&z__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
00248 , &c__1);
00249                 sumr.r = z__1.r, sumr.i = z__1.i;
00250                 i__2 = k + l * c_dim1;
00251                 z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
00252                 z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
00253                 z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
00254                 vec.r = z__1.r, vec.i = z__1.i;
00255 
00256                 scaloc = 1.;
00257                 i__2 = k + k * a_dim1;
00258                 i__3 = l + l * b_dim1;
00259                 z__2.r = sgn * b[i__3].r, z__2.i = sgn * b[i__3].i;
00260                 z__1.r = a[i__2].r + z__2.r, z__1.i = a[i__2].i + z__2.i;
00261                 a11.r = z__1.r, a11.i = z__1.i;
00262                 da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
00263                         d__2));
00264                 if (da11 <= smin) {
00265                     a11.r = smin, a11.i = 0.;
00266                     da11 = smin;
00267                     *info = 1;
00268                 }
00269                 db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
00270                         d__2));
00271                 if (da11 < 1. && db > 1.) {
00272                     if (db > bignum * da11) {
00273                         scaloc = 1. / db;
00274                     }
00275                 }
00276                 z__3.r = scaloc, z__3.i = 0.;
00277                 z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * 
00278                         z__3.i + vec.i * z__3.r;
00279                 zladiv_(&z__1, &z__2, &a11);
00280                 x11.r = z__1.r, x11.i = z__1.i;
00281 
00282                 if (scaloc != 1.) {
00283                     i__2 = *n;
00284                     for (j = 1; j <= i__2; ++j) {
00285                         zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
00286 /* L10: */
00287                     }
00288                     *scale *= scaloc;
00289                 }
00290                 i__2 = k + l * c_dim1;
00291                 c__[i__2].r = x11.r, c__[i__2].i = x11.i;
00292 
00293 /* L20: */
00294             }
00295 /* L30: */
00296         }
00297 
00298     } else if (! notrna && notrnb) {
00299 
00300 /*        Solve    A' *X + ISGN*X*B = scale*C. */
00301 
00302 /*        The (K,L)th block of X is determined starting from */
00303 /*        upper-left corner column by column by */
00304 
00305 /*            A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
00306 
00307 /*        Where */
00308 /*                   K-1                         L-1 */
00309 /*          R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
00310 /*                   I=1                         J=1 */
00311 
00312         i__1 = *n;
00313         for (l = 1; l <= i__1; ++l) {
00314             i__2 = *m;
00315             for (k = 1; k <= i__2; ++k) {
00316 
00317                 i__3 = k - 1;
00318                 zdotc_(&z__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l * 
00319                         c_dim1 + 1], &c__1);
00320                 suml.r = z__1.r, suml.i = z__1.i;
00321                 i__3 = l - 1;
00322                 zdotu_(&z__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
00323 , &c__1);
00324                 sumr.r = z__1.r, sumr.i = z__1.i;
00325                 i__3 = k + l * c_dim1;
00326                 z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
00327                 z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
00328                 z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
00329                 vec.r = z__1.r, vec.i = z__1.i;
00330 
00331                 scaloc = 1.;
00332                 d_cnjg(&z__2, &a[k + k * a_dim1]);
00333                 i__3 = l + l * b_dim1;
00334                 z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
00335                 z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
00336                 a11.r = z__1.r, a11.i = z__1.i;
00337                 da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
00338                         d__2));
00339                 if (da11 <= smin) {
00340                     a11.r = smin, a11.i = 0.;
00341                     da11 = smin;
00342                     *info = 1;
00343                 }
00344                 db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
00345                         d__2));
00346                 if (da11 < 1. && db > 1.) {
00347                     if (db > bignum * da11) {
00348                         scaloc = 1. / db;
00349                     }
00350                 }
00351 
00352                 z__3.r = scaloc, z__3.i = 0.;
00353                 z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * 
00354                         z__3.i + vec.i * z__3.r;
00355                 zladiv_(&z__1, &z__2, &a11);
00356                 x11.r = z__1.r, x11.i = z__1.i;
00357 
00358                 if (scaloc != 1.) {
00359                     i__3 = *n;
00360                     for (j = 1; j <= i__3; ++j) {
00361                         zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
00362 /* L40: */
00363                     }
00364                     *scale *= scaloc;
00365                 }
00366                 i__3 = k + l * c_dim1;
00367                 c__[i__3].r = x11.r, c__[i__3].i = x11.i;
00368 
00369 /* L50: */
00370             }
00371 /* L60: */
00372         }
00373 
00374     } else if (! notrna && ! notrnb) {
00375 
00376 /*        Solve    A'*X + ISGN*X*B' = C. */
00377 
00378 /*        The (K,L)th block of X is determined starting from */
00379 /*        upper-right corner column by column by */
00380 
00381 /*            A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) */
00382 
00383 /*        Where */
00384 /*                    K-1 */
00385 /*           R(K,L) = SUM [A'(I,K)*X(I,L)] + */
00386 /*                    I=1 */
00387 /*                           N */
00388 /*                     ISGN*SUM [X(K,J)*B'(L,J)]. */
00389 /*                          J=L+1 */
00390 
00391         for (l = *n; l >= 1; --l) {
00392             i__1 = *m;
00393             for (k = 1; k <= i__1; ++k) {
00394 
00395                 i__2 = k - 1;
00396                 zdotc_(&z__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l * 
00397                         c_dim1 + 1], &c__1);
00398                 suml.r = z__1.r, suml.i = z__1.i;
00399                 i__2 = *n - l;
00400 /* Computing MIN */
00401                 i__3 = l + 1;
00402 /* Computing MIN */
00403                 i__4 = l + 1;
00404                 zdotc_(&z__1, &i__2, &c__[k + min(i__3, *n)* c_dim1], ldc, &b[
00405                         l + min(i__4, *n)* b_dim1], ldb);
00406                 sumr.r = z__1.r, sumr.i = z__1.i;
00407                 i__2 = k + l * c_dim1;
00408                 d_cnjg(&z__4, &sumr);
00409                 z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
00410                 z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
00411                 z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
00412                 vec.r = z__1.r, vec.i = z__1.i;
00413 
00414                 scaloc = 1.;
00415                 i__2 = k + k * a_dim1;
00416                 i__3 = l + l * b_dim1;
00417                 z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
00418                 z__2.r = a[i__2].r + z__3.r, z__2.i = a[i__2].i + z__3.i;
00419                 d_cnjg(&z__1, &z__2);
00420                 a11.r = z__1.r, a11.i = z__1.i;
00421                 da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
00422                         d__2));
00423                 if (da11 <= smin) {
00424                     a11.r = smin, a11.i = 0.;
00425                     da11 = smin;
00426                     *info = 1;
00427                 }
00428                 db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
00429                         d__2));
00430                 if (da11 < 1. && db > 1.) {
00431                     if (db > bignum * da11) {
00432                         scaloc = 1. / db;
00433                     }
00434                 }
00435 
00436                 z__3.r = scaloc, z__3.i = 0.;
00437                 z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * 
00438                         z__3.i + vec.i * z__3.r;
00439                 zladiv_(&z__1, &z__2, &a11);
00440                 x11.r = z__1.r, x11.i = z__1.i;
00441 
00442                 if (scaloc != 1.) {
00443                     i__2 = *n;
00444                     for (j = 1; j <= i__2; ++j) {
00445                         zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
00446 /* L70: */
00447                     }
00448                     *scale *= scaloc;
00449                 }
00450                 i__2 = k + l * c_dim1;
00451                 c__[i__2].r = x11.r, c__[i__2].i = x11.i;
00452 
00453 /* L80: */
00454             }
00455 /* L90: */
00456         }
00457 
00458     } else if (notrna && ! notrnb) {
00459 
00460 /*        Solve    A*X + ISGN*X*B' = C. */
00461 
00462 /*        The (K,L)th block of X is determined starting from */
00463 /*        bottom-left corner column by column by */
00464 
00465 /*           A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) */
00466 
00467 /*        Where */
00468 /*                    M                          N */
00469 /*          R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)] */
00470 /*                  I=K+1                      J=L+1 */
00471 
00472         for (l = *n; l >= 1; --l) {
00473             for (k = *m; k >= 1; --k) {
00474 
00475                 i__1 = *m - k;
00476 /* Computing MIN */
00477                 i__2 = k + 1;
00478 /* Computing MIN */
00479                 i__3 = k + 1;
00480                 zdotu_(&z__1, &i__1, &a[k + min(i__2, *m)* a_dim1], lda, &c__[
00481                         min(i__3, *m)+ l * c_dim1], &c__1);
00482                 suml.r = z__1.r, suml.i = z__1.i;
00483                 i__1 = *n - l;
00484 /* Computing MIN */
00485                 i__2 = l + 1;
00486 /* Computing MIN */
00487                 i__3 = l + 1;
00488                 zdotc_(&z__1, &i__1, &c__[k + min(i__2, *n)* c_dim1], ldc, &b[
00489                         l + min(i__3, *n)* b_dim1], ldb);
00490                 sumr.r = z__1.r, sumr.i = z__1.i;
00491                 i__1 = k + l * c_dim1;
00492                 d_cnjg(&z__4, &sumr);
00493                 z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
00494                 z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
00495                 z__1.r = c__[i__1].r - z__2.r, z__1.i = c__[i__1].i - z__2.i;
00496                 vec.r = z__1.r, vec.i = z__1.i;
00497 
00498                 scaloc = 1.;
00499                 i__1 = k + k * a_dim1;
00500                 d_cnjg(&z__3, &b[l + l * b_dim1]);
00501                 z__2.r = sgn * z__3.r, z__2.i = sgn * z__3.i;
00502                 z__1.r = a[i__1].r + z__2.r, z__1.i = a[i__1].i + z__2.i;
00503                 a11.r = z__1.r, a11.i = z__1.i;
00504                 da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
00505                         d__2));
00506                 if (da11 <= smin) {
00507                     a11.r = smin, a11.i = 0.;
00508                     da11 = smin;
00509                     *info = 1;
00510                 }
00511                 db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
00512                         d__2));
00513                 if (da11 < 1. && db > 1.) {
00514                     if (db > bignum * da11) {
00515                         scaloc = 1. / db;
00516                     }
00517                 }
00518 
00519                 z__3.r = scaloc, z__3.i = 0.;
00520                 z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * 
00521                         z__3.i + vec.i * z__3.r;
00522                 zladiv_(&z__1, &z__2, &a11);
00523                 x11.r = z__1.r, x11.i = z__1.i;
00524 
00525                 if (scaloc != 1.) {
00526                     i__1 = *n;
00527                     for (j = 1; j <= i__1; ++j) {
00528                         zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
00529 /* L100: */
00530                     }
00531                     *scale *= scaloc;
00532                 }
00533                 i__1 = k + l * c_dim1;
00534                 c__[i__1].r = x11.r, c__[i__1].i = x11.i;
00535 
00536 /* L110: */
00537             }
00538 /* L120: */
00539         }
00540 
00541     }
00542 
00543     return 0;
00544 
00545 /*     End of ZTRSYL */
00546 
00547 } /* ztrsyl_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:44