ztpt03.c
Go to the documentation of this file.
00001 /* ztpt03.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int ztpt03_(char *uplo, char *trans, char *diag, integer *n, 
00021         integer *nrhs, doublecomplex *ap, doublereal *scale, doublereal *
00022         cnorm, doublereal *tscal, doublecomplex *x, integer *ldx, 
00023         doublecomplex *b, integer *ldb, doublecomplex *work, doublereal *
00024         resid)
00025 {
00026     /* System generated locals */
00027     integer b_dim1, b_offset, x_dim1, x_offset, i__1;
00028     doublereal d__1, d__2;
00029     doublecomplex z__1;
00030 
00031     /* Builtin functions */
00032     double z_abs(doublecomplex *);
00033 
00034     /* Local variables */
00035     integer j, jj, ix;
00036     doublereal eps, err;
00037     extern logical lsame_(char *, char *);
00038     doublereal xscal, tnorm, xnorm;
00039     extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
00040             doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 
00041             doublecomplex *, integer *, doublecomplex *, integer *), ztpmv_(
00042             char *, char *, char *, integer *, doublecomplex *, doublecomplex 
00043             *, integer *);
00044     extern doublereal dlamch_(char *);
00045     extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
00046             doublecomplex *, integer *);
00047     extern integer izamax_(integer *, doublecomplex *, integer *);
00048     doublereal smlnum;
00049 
00050 
00051 /*  -- LAPACK test routine (version 3.1) -- */
00052 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00053 /*     November 2006 */
00054 
00055 /*     .. Scalar Arguments .. */
00056 /*     .. */
00057 /*     .. Array Arguments .. */
00058 /*     .. */
00059 
00060 /*  Purpose */
00061 /*  ======= */
00062 
00063 /*  ZTPT03 computes the residual for the solution to a scaled triangular */
00064 /*  system of equations A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b, */
00065 /*  when the triangular matrix A is stored in packed format.  Here A**T */
00066 /*  denotes the transpose of A, A**H denotes the conjugate transpose of */
00067 /*  A, s is a scalar, and x and b are N by NRHS matrices.  The test ratio */
00068 /*  is the maximum over the number of right hand sides of */
00069 /*     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
00070 /*  where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */
00071 
00072 /*  Arguments */
00073 /*  ========= */
00074 
00075 /*  UPLO    (input) CHARACTER*1 */
00076 /*          Specifies whether the matrix A is upper or lower triangular. */
00077 /*          = 'U':  Upper triangular */
00078 /*          = 'L':  Lower triangular */
00079 
00080 /*  TRANS   (input) CHARACTER*1 */
00081 /*          Specifies the operation applied to A. */
00082 /*          = 'N':  A *x = s*b     (No transpose) */
00083 /*          = 'T':  A**T *x = s*b  (Transpose) */
00084 /*          = 'C':  A**H *x = s*b  (Conjugate transpose) */
00085 
00086 /*  DIAG    (input) CHARACTER*1 */
00087 /*          Specifies whether or not the matrix A is unit triangular. */
00088 /*          = 'N':  Non-unit triangular */
00089 /*          = 'U':  Unit triangular */
00090 
00091 /*  N       (input) INTEGER */
00092 /*          The order of the matrix A.  N >= 0. */
00093 
00094 /*  NRHS    (input) INTEGER */
00095 /*          The number of right hand sides, i.e., the number of columns */
00096 /*          of the matrices X and B.  NRHS >= 0. */
00097 
00098 /*  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
00099 /*          The upper or lower triangular matrix A, packed columnwise in */
00100 /*          a linear array.  The j-th column of A is stored in the array */
00101 /*          AP as follows: */
00102 /*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */
00103 /*          if UPLO = 'L', */
00104 /*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */
00105 
00106 /*  SCALE   (input) DOUBLE PRECISION */
00107 /*          The scaling factor s used in solving the triangular system. */
00108 
00109 /*  CNORM   (input) DOUBLE PRECISION array, dimension (N) */
00110 /*          The 1-norms of the columns of A, not counting the diagonal. */
00111 
00112 /*  TSCAL   (input) DOUBLE PRECISION */
00113 /*          The scaling factor used in computing the 1-norms in CNORM. */
00114 /*          CNORM actually contains the column norms of TSCAL*A. */
00115 
00116 /*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS) */
00117 /*          The computed solution vectors for the system of linear */
00118 /*          equations. */
00119 
00120 /*  LDX     (input) INTEGER */
00121 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00122 
00123 /*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS) */
00124 /*          The right hand side vectors for the system of linear */
00125 /*          equations. */
00126 
00127 /*  LDB     (input) INTEGER */
00128 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00129 
00130 /*  WORK    (workspace) COMPLEX*16 array, dimension (N) */
00131 
00132 /*  RESID   (output) DOUBLE PRECISION */
00133 /*          The maximum over the number of right hand sides of */
00134 /*          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00135 
00136 /*  ===================================================================== */
00137 
00138 /*     .. Parameters .. */
00139 /*     .. */
00140 /*     .. Local Scalars .. */
00141 /*     .. */
00142 /*     .. External Functions .. */
00143 /*     .. */
00144 /*     .. External Subroutines .. */
00145 /*     .. */
00146 /*     .. Intrinsic Functions .. */
00147 /*     .. */
00148 /*     .. Executable Statements .. */
00149 
00150 /*     Quick exit if N = 0. */
00151 
00152     /* Parameter adjustments */
00153     --ap;
00154     --cnorm;
00155     x_dim1 = *ldx;
00156     x_offset = 1 + x_dim1;
00157     x -= x_offset;
00158     b_dim1 = *ldb;
00159     b_offset = 1 + b_dim1;
00160     b -= b_offset;
00161     --work;
00162 
00163     /* Function Body */
00164     if (*n <= 0 || *nrhs <= 0) {
00165         *resid = 0.;
00166         return 0;
00167     }
00168     eps = dlamch_("Epsilon");
00169     smlnum = dlamch_("Safe minimum");
00170 
00171 /*     Compute the norm of the triangular matrix A using the column */
00172 /*     norms already computed by ZLATPS. */
00173 
00174     tnorm = 0.;
00175     if (lsame_(diag, "N")) {
00176         if (lsame_(uplo, "U")) {
00177             jj = 1;
00178             i__1 = *n;
00179             for (j = 1; j <= i__1; ++j) {
00180 /* Computing MAX */
00181                 d__1 = tnorm, d__2 = *tscal * z_abs(&ap[jj]) + cnorm[j];
00182                 tnorm = max(d__1,d__2);
00183                 jj += j;
00184 /* L10: */
00185             }
00186         } else {
00187             jj = 1;
00188             i__1 = *n;
00189             for (j = 1; j <= i__1; ++j) {
00190 /* Computing MAX */
00191                 d__1 = tnorm, d__2 = *tscal * z_abs(&ap[jj]) + cnorm[j];
00192                 tnorm = max(d__1,d__2);
00193                 jj = jj + *n - j + 1;
00194 /* L20: */
00195             }
00196         }
00197     } else {
00198         i__1 = *n;
00199         for (j = 1; j <= i__1; ++j) {
00200 /* Computing MAX */
00201             d__1 = tnorm, d__2 = *tscal + cnorm[j];
00202             tnorm = max(d__1,d__2);
00203 /* L30: */
00204         }
00205     }
00206 
00207 /*     Compute the maximum over the number of right hand sides of */
00208 /*        norm(op(A)*x - s*b) / ( norm(A) * norm(x) * EPS ). */
00209 
00210     *resid = 0.;
00211     i__1 = *nrhs;
00212     for (j = 1; j <= i__1; ++j) {
00213         zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
00214         ix = izamax_(n, &work[1], &c__1);
00215 /* Computing MAX */
00216         d__1 = 1., d__2 = z_abs(&x[ix + j * x_dim1]);
00217         xnorm = max(d__1,d__2);
00218         xscal = 1. / xnorm / (doublereal) (*n);
00219         zdscal_(n, &xscal, &work[1], &c__1);
00220         ztpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1);
00221         d__1 = -(*scale) * xscal;
00222         z__1.r = d__1, z__1.i = 0.;
00223         zaxpy_(n, &z__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00224         ix = izamax_(n, &work[1], &c__1);
00225         err = *tscal * z_abs(&work[ix]);
00226         ix = izamax_(n, &x[j * x_dim1 + 1], &c__1);
00227         xnorm = z_abs(&x[ix + j * x_dim1]);
00228         if (err * smlnum <= xnorm) {
00229             if (xnorm > 0.) {
00230                 err /= xnorm;
00231             }
00232         } else {
00233             if (err > 0.) {
00234                 err = 1. / eps;
00235             }
00236         }
00237         if (err * smlnum <= tnorm) {
00238             if (tnorm > 0.) {
00239                 err /= tnorm;
00240             }
00241         } else {
00242             if (err > 0.) {
00243                 err = 1. / eps;
00244             }
00245         }
00246         *resid = max(*resid,err);
00247 /* L40: */
00248     }
00249 
00250     return 0;
00251 
00252 /*     End of ZTPT03 */
00253 
00254 } /* ztpt03_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:44