00001 /* ztpt01.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ztpt01_(char *uplo, char *diag, integer *n, 00021 doublecomplex *ap, doublecomplex *ainvp, doublereal *rcond, 00022 doublereal *rwork, doublereal *resid) 00023 { 00024 /* System generated locals */ 00025 integer i__1, i__2, i__3; 00026 doublecomplex z__1; 00027 00028 /* Local variables */ 00029 integer j, jc; 00030 doublereal eps; 00031 extern logical lsame_(char *, char *); 00032 doublereal anorm; 00033 logical unitd; 00034 extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, 00035 doublecomplex *, doublecomplex *, integer *); 00036 extern doublereal dlamch_(char *); 00037 doublereal ainvnm; 00038 extern doublereal zlantp_(char *, char *, char *, integer *, 00039 doublecomplex *, doublereal *); 00040 00041 00042 /* -- LAPACK test routine (version 3.1) -- */ 00043 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00044 /* November 2006 */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* ZTPT01 computes the residual for a triangular matrix A times its */ 00055 /* inverse when A is stored in packed format: */ 00056 /* RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), */ 00057 /* where EPS is the machine epsilon. */ 00058 00059 /* Arguments */ 00060 /* ========== */ 00061 00062 /* UPLO (input) CHARACTER*1 */ 00063 /* Specifies whether the matrix A is upper or lower triangular. */ 00064 /* = 'U': Upper triangular */ 00065 /* = 'L': Lower triangular */ 00066 00067 /* DIAG (input) CHARACTER*1 */ 00068 /* Specifies whether or not the matrix A is unit triangular. */ 00069 /* = 'N': Non-unit triangular */ 00070 /* = 'U': Unit triangular */ 00071 00072 /* N (input) INTEGER */ 00073 /* The order of the matrix A. N >= 0. */ 00074 00075 /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00076 /* The original upper or lower triangular matrix A, packed */ 00077 /* columnwise in a linear array. The j-th column of A is stored */ 00078 /* in the array AP as follows: */ 00079 /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ 00080 /* if UPLO = 'L', */ 00081 /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ 00082 00083 /* AINVP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00084 /* On entry, the (triangular) inverse of the matrix A, packed */ 00085 /* columnwise in a linear array as in AP. */ 00086 /* On exit, the contents of AINVP are destroyed. */ 00087 00088 /* RCOND (output) DOUBLE PRECISION */ 00089 /* The reciprocal condition number of A, computed as */ 00090 /* 1/(norm(A) * norm(AINV)). */ 00091 00092 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00093 00094 /* RESID (output) DOUBLE PRECISION */ 00095 /* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) */ 00096 00097 /* ===================================================================== */ 00098 00099 /* .. Parameters .. */ 00100 /* .. */ 00101 /* .. Local Scalars .. */ 00102 /* .. */ 00103 /* .. External Functions .. */ 00104 /* .. */ 00105 /* .. External Subroutines .. */ 00106 /* .. */ 00107 /* .. Intrinsic Functions .. */ 00108 /* .. */ 00109 /* .. Executable Statements .. */ 00110 00111 /* Quick exit if N = 0. */ 00112 00113 /* Parameter adjustments */ 00114 --rwork; 00115 --ainvp; 00116 --ap; 00117 00118 /* Function Body */ 00119 if (*n <= 0) { 00120 *rcond = 1.; 00121 *resid = 0.; 00122 return 0; 00123 } 00124 00125 /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ 00126 00127 eps = dlamch_("Epsilon"); 00128 anorm = zlantp_("1", uplo, diag, n, &ap[1], &rwork[1]); 00129 ainvnm = zlantp_("1", uplo, diag, n, &ainvp[1], &rwork[1]); 00130 if (anorm <= 0. || ainvnm <= 0.) { 00131 *rcond = 0.; 00132 *resid = 1. / eps; 00133 return 0; 00134 } 00135 *rcond = 1. / anorm / ainvnm; 00136 00137 /* Compute A * AINV, overwriting AINV. */ 00138 00139 unitd = lsame_(diag, "U"); 00140 if (lsame_(uplo, "U")) { 00141 jc = 1; 00142 i__1 = *n; 00143 for (j = 1; j <= i__1; ++j) { 00144 if (unitd) { 00145 i__2 = jc + j - 1; 00146 ainvp[i__2].r = 1., ainvp[i__2].i = 0.; 00147 } 00148 00149 /* Form the j-th column of A*AINV. */ 00150 00151 ztpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], & 00152 c__1); 00153 00154 /* Subtract 1 from the diagonal to form A*AINV - I. */ 00155 00156 i__2 = jc + j - 1; 00157 i__3 = jc + j - 1; 00158 z__1.r = ainvp[i__3].r - 1., z__1.i = ainvp[i__3].i; 00159 ainvp[i__2].r = z__1.r, ainvp[i__2].i = z__1.i; 00160 jc += j; 00161 /* L10: */ 00162 } 00163 } else { 00164 jc = 1; 00165 i__1 = *n; 00166 for (j = 1; j <= i__1; ++j) { 00167 if (unitd) { 00168 i__2 = jc; 00169 ainvp[i__2].r = 1., ainvp[i__2].i = 0.; 00170 } 00171 00172 /* Form the j-th column of A*AINV. */ 00173 00174 i__2 = *n - j + 1; 00175 ztpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], 00176 &c__1); 00177 00178 /* Subtract 1 from the diagonal to form A*AINV - I. */ 00179 00180 i__2 = jc; 00181 i__3 = jc; 00182 z__1.r = ainvp[i__3].r - 1., z__1.i = ainvp[i__3].i; 00183 ainvp[i__2].r = z__1.r, ainvp[i__2].i = z__1.i; 00184 jc = jc + *n - j + 1; 00185 /* L20: */ 00186 } 00187 } 00188 00189 /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ 00190 00191 *resid = zlantp_("1", uplo, "Non-unit", n, &ainvp[1], &rwork[1]); 00192 00193 *resid = *resid * *rcond / (doublereal) (*n) / eps; 00194 00195 return 0; 00196 00197 /* End of ZTPT01 */ 00198 00199 } /* ztpt01_ */