ztftri.c
Go to the documentation of this file.
00001 /* ztftri.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublecomplex c_b1 = {1.,0.};
00019 
00020 /* Subroutine */ int ztftri_(char *transr, char *uplo, char *diag, integer *n, 
00021          doublecomplex *a, integer *info)
00022 {
00023     /* System generated locals */
00024     integer i__1, i__2;
00025     doublecomplex z__1;
00026 
00027     /* Local variables */
00028     integer k, n1, n2;
00029     logical normaltransr;
00030     extern logical lsame_(char *, char *);
00031     logical lower;
00032     extern /* Subroutine */ int ztrmm_(char *, char *, char *, char *, 
00033             integer *, integer *, doublecomplex *, doublecomplex *, integer *, 
00034              doublecomplex *, integer *), 
00035             xerbla_(char *, integer *);
00036     logical nisodd;
00037     extern /* Subroutine */ int ztrtri_(char *, char *, integer *, 
00038             doublecomplex *, integer *, integer *);
00039 
00040 
00041 /*  -- LAPACK routine (version 3.2)                                    -- */
00042 
00043 /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
00044 /*  -- November 2008                                                   -- */
00045 
00046 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00047 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00048 
00049 /*     .. Scalar Arguments .. */
00050 /*     .. */
00051 /*     .. Array Arguments .. */
00052 /*     .. */
00053 
00054 /*  Purpose */
00055 /*  ======= */
00056 
00057 /*  ZTFTRI computes the inverse of a triangular matrix A stored in RFP */
00058 /*  format. */
00059 
00060 /*  This is a Level 3 BLAS version of the algorithm. */
00061 
00062 /*  Arguments */
00063 /*  ========= */
00064 
00065 /*  TRANSR    (input) CHARACTER */
00066 /*          = 'N':  The Normal TRANSR of RFP A is stored; */
00067 /*          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored. */
00068 
00069 /*  UPLO    (input) CHARACTER */
00070 /*          = 'U':  A is upper triangular; */
00071 /*          = 'L':  A is lower triangular. */
00072 
00073 /*  DIAG    (input) CHARACTER */
00074 /*          = 'N':  A is non-unit triangular; */
00075 /*          = 'U':  A is unit triangular. */
00076 
00077 /*  N       (input) INTEGER */
00078 /*          The order of the matrix A.  N >= 0. */
00079 
00080 /*  A       (input/output) COMPLEX*16 array, dimension ( N*(N+1)/2 ); */
00081 /*          On entry, the triangular matrix A in RFP format. RFP format */
00082 /*          is described by TRANSR, UPLO, and N as follows: If TRANSR = */
00083 /*          'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
00084 /*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is */
00085 /*          the Conjugate-transpose of RFP A as defined when */
00086 /*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
00087 /*          follows: If UPLO = 'U' the RFP A contains the nt elements of */
00088 /*          upper packed A; If UPLO = 'L' the RFP A contains the nt */
00089 /*          elements of lower packed A. The LDA of RFP A is (N+1)/2 when */
00090 /*          TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is */
00091 /*          even and N is odd. See the Note below for more details. */
00092 
00093 /*          On exit, the (triangular) inverse of the original matrix, in */
00094 /*          the same storage format. */
00095 
00096 /*  INFO    (output) INTEGER */
00097 /*          = 0: successful exit */
00098 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00099 /*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular */
00100 /*               matrix is singular and its inverse can not be computed. */
00101 
00102 /*  Notes: */
00103 /*  ====== */
00104 
00105 /*  We first consider Standard Packed Format when N is even. */
00106 /*  We give an example where N = 6. */
00107 
00108 /*      AP is Upper             AP is Lower */
00109 
00110 /*   00 01 02 03 04 05       00 */
00111 /*      11 12 13 14 15       10 11 */
00112 /*         22 23 24 25       20 21 22 */
00113 /*            33 34 35       30 31 32 33 */
00114 /*               44 45       40 41 42 43 44 */
00115 /*                  55       50 51 52 53 54 55 */
00116 
00117 
00118 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00119 /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
00120 /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
00121 /*  conjugate-transpose of the first three columns of AP upper. */
00122 /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
00123 /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
00124 /*  conjugate-transpose of the last three columns of AP lower. */
00125 /*  To denote conjugate we place -- above the element. This covers the */
00126 /*  case N even and TRANSR = 'N'. */
00127 
00128 /*         RFP A                   RFP A */
00129 
00130 /*                                -- -- -- */
00131 /*        03 04 05                33 43 53 */
00132 /*                                   -- -- */
00133 /*        13 14 15                00 44 54 */
00134 /*                                      -- */
00135 /*        23 24 25                10 11 55 */
00136 
00137 /*        33 34 35                20 21 22 */
00138 /*        -- */
00139 /*        00 44 45                30 31 32 */
00140 /*        -- -- */
00141 /*        01 11 55                40 41 42 */
00142 /*        -- -- -- */
00143 /*        02 12 22                50 51 52 */
00144 
00145 /*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
00146 /*  transpose of RFP A above. One therefore gets: */
00147 
00148 
00149 /*           RFP A                   RFP A */
00150 
00151 /*     -- -- -- --                -- -- -- -- -- -- */
00152 /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
00153 /*     -- -- -- -- --                -- -- -- -- -- */
00154 /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
00155 /*     -- -- -- -- -- --                -- -- -- -- */
00156 /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
00157 
00158 
00159 /*  We next  consider Standard Packed Format when N is odd. */
00160 /*  We give an example where N = 5. */
00161 
00162 /*     AP is Upper                 AP is Lower */
00163 
00164 /*   00 01 02 03 04              00 */
00165 /*      11 12 13 14              10 11 */
00166 /*         22 23 24              20 21 22 */
00167 /*            33 34              30 31 32 33 */
00168 /*               44              40 41 42 43 44 */
00169 
00170 
00171 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00172 /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
00173 /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
00174 /*  conjugate-transpose of the first two   columns of AP upper. */
00175 /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
00176 /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
00177 /*  conjugate-transpose of the last two   columns of AP lower. */
00178 /*  To denote conjugate we place -- above the element. This covers the */
00179 /*  case N odd  and TRANSR = 'N'. */
00180 
00181 /*         RFP A                   RFP A */
00182 
00183 /*                                   -- -- */
00184 /*        02 03 04                00 33 43 */
00185 /*                                      -- */
00186 /*        12 13 14                10 11 44 */
00187 
00188 /*        22 23 24                20 21 22 */
00189 /*        -- */
00190 /*        00 33 34                30 31 32 */
00191 /*        -- -- */
00192 /*        01 11 44                40 41 42 */
00193 
00194 /*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
00195 /*  transpose of RFP A above. One therefore gets: */
00196 
00197 
00198 /*           RFP A                   RFP A */
00199 
00200 /*     -- -- --                   -- -- -- -- -- -- */
00201 /*     02 12 22 00 01             00 10 20 30 40 50 */
00202 /*     -- -- -- --                   -- -- -- -- -- */
00203 /*     03 13 23 33 11             33 11 21 31 41 51 */
00204 /*     -- -- -- -- --                   -- -- -- -- */
00205 /*     04 14 24 34 44             43 44 22 32 42 52 */
00206 
00207 /*  ===================================================================== */
00208 
00209 /*     .. Parameters .. */
00210 /*     .. */
00211 /*     .. Local Scalars .. */
00212 /*     .. */
00213 /*     .. External Functions .. */
00214 /*     .. */
00215 /*     .. External Subroutines .. */
00216 /*     .. */
00217 /*     .. Intrinsic Functions .. */
00218 /*     .. */
00219 /*     .. Executable Statements .. */
00220 
00221 /*     Test the input parameters. */
00222 
00223     *info = 0;
00224     normaltransr = lsame_(transr, "N");
00225     lower = lsame_(uplo, "L");
00226     if (! normaltransr && ! lsame_(transr, "C")) {
00227         *info = -1;
00228     } else if (! lower && ! lsame_(uplo, "U")) {
00229         *info = -2;
00230     } else if (! lsame_(diag, "N") && ! lsame_(diag, 
00231             "U")) {
00232         *info = -3;
00233     } else if (*n < 0) {
00234         *info = -4;
00235     }
00236     if (*info != 0) {
00237         i__1 = -(*info);
00238         xerbla_("ZTFTRI", &i__1);
00239         return 0;
00240     }
00241 
00242 /*     Quick return if possible */
00243 
00244     if (*n == 0) {
00245         return 0;
00246     }
00247 
00248 /*     If N is odd, set NISODD = .TRUE. */
00249 /*     If N is even, set K = N/2 and NISODD = .FALSE. */
00250 
00251     if (*n % 2 == 0) {
00252         k = *n / 2;
00253         nisodd = FALSE_;
00254     } else {
00255         nisodd = TRUE_;
00256     }
00257 
00258 /*     Set N1 and N2 depending on LOWER */
00259 
00260     if (lower) {
00261         n2 = *n / 2;
00262         n1 = *n - n2;
00263     } else {
00264         n1 = *n / 2;
00265         n2 = *n - n1;
00266     }
00267 
00268 
00269 /*     start execution: there are eight cases */
00270 
00271     if (nisodd) {
00272 
00273 /*        N is odd */
00274 
00275         if (normaltransr) {
00276 
00277 /*           N is odd and TRANSR = 'N' */
00278 
00279             if (lower) {
00280 
00281 /*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
00282 /*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
00283 /*             T1 -> a(0), T2 -> a(n), S -> a(n1) */
00284 
00285                 ztrtri_("L", diag, &n1, a, n, info);
00286                 if (*info > 0) {
00287                     return 0;
00288                 }
00289                 z__1.r = -1., z__1.i = -0.;
00290                 ztrmm_("R", "L", "N", diag, &n2, &n1, &z__1, a, n, &a[n1], n);
00291                 ztrtri_("U", diag, &n2, &a[*n], n, info)
00292                         ;
00293                 if (*info > 0) {
00294                     *info += n1;
00295                 }
00296                 if (*info > 0) {
00297                     return 0;
00298                 }
00299                 ztrmm_("L", "U", "C", diag, &n2, &n1, &c_b1, &a[*n], n, &a[n1]
00300 , n);
00301 
00302             } else {
00303 
00304 /*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
00305 /*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
00306 /*             T1 -> a(n2), T2 -> a(n1), S -> a(0) */
00307 
00308                 ztrtri_("L", diag, &n1, &a[n2], n, info)
00309                         ;
00310                 if (*info > 0) {
00311                     return 0;
00312                 }
00313                 z__1.r = -1., z__1.i = -0.;
00314                 ztrmm_("L", "L", "C", diag, &n1, &n2, &z__1, &a[n2], n, a, n);
00315                 ztrtri_("U", diag, &n2, &a[n1], n, info)
00316                         ;
00317                 if (*info > 0) {
00318                     *info += n1;
00319                 }
00320                 if (*info > 0) {
00321                     return 0;
00322                 }
00323                 ztrmm_("R", "U", "N", diag, &n1, &n2, &c_b1, &a[n1], n, a, n);
00324 
00325             }
00326 
00327         } else {
00328 
00329 /*           N is odd and TRANSR = 'C' */
00330 
00331             if (lower) {
00332 
00333 /*              SRPA for LOWER, TRANSPOSE and N is odd */
00334 /*              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1) */
00335 
00336                 ztrtri_("U", diag, &n1, a, &n1, info);
00337                 if (*info > 0) {
00338                     return 0;
00339                 }
00340                 z__1.r = -1., z__1.i = -0.;
00341                 ztrmm_("L", "U", "N", diag, &n1, &n2, &z__1, a, &n1, &a[n1 * 
00342                         n1], &n1);
00343                 ztrtri_("L", diag, &n2, &a[1], &n1, info);
00344                 if (*info > 0) {
00345                     *info += n1;
00346                 }
00347                 if (*info > 0) {
00348                     return 0;
00349                 }
00350                 ztrmm_("R", "L", "C", diag, &n1, &n2, &c_b1, &a[1], &n1, &a[
00351                         n1 * n1], &n1);
00352 
00353             } else {
00354 
00355 /*              SRPA for UPPER, TRANSPOSE and N is odd */
00356 /*              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0) */
00357 
00358                 ztrtri_("U", diag, &n1, &a[n2 * n2], &n2, info);
00359                 if (*info > 0) {
00360                     return 0;
00361                 }
00362                 z__1.r = -1., z__1.i = -0.;
00363                 ztrmm_("R", "U", "C", diag, &n2, &n1, &z__1, &a[n2 * n2], &n2, 
00364                          a, &n2);
00365                 ztrtri_("L", diag, &n2, &a[n1 * n2], &n2, info);
00366                 if (*info > 0) {
00367                     *info += n1;
00368                 }
00369                 if (*info > 0) {
00370                     return 0;
00371                 }
00372                 ztrmm_("L", "L", "N", diag, &n2, &n1, &c_b1, &a[n1 * n2], &n2, 
00373                          a, &n2);
00374             }
00375 
00376         }
00377 
00378     } else {
00379 
00380 /*        N is even */
00381 
00382         if (normaltransr) {
00383 
00384 /*           N is even and TRANSR = 'N' */
00385 
00386             if (lower) {
00387 
00388 /*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00389 /*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
00390 /*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */
00391 
00392                 i__1 = *n + 1;
00393                 ztrtri_("L", diag, &k, &a[1], &i__1, info);
00394                 if (*info > 0) {
00395                     return 0;
00396                 }
00397                 z__1.r = -1., z__1.i = -0.;
00398                 i__1 = *n + 1;
00399                 i__2 = *n + 1;
00400                 ztrmm_("R", "L", "N", diag, &k, &k, &z__1, &a[1], &i__1, &a[k 
00401                         + 1], &i__2);
00402                 i__1 = *n + 1;
00403                 ztrtri_("U", diag, &k, a, &i__1, info);
00404                 if (*info > 0) {
00405                     *info += k;
00406                 }
00407                 if (*info > 0) {
00408                     return 0;
00409                 }
00410                 i__1 = *n + 1;
00411                 i__2 = *n + 1;
00412                 ztrmm_("L", "U", "C", diag, &k, &k, &c_b1, a, &i__1, &a[k + 1]
00413 , &i__2);
00414 
00415             } else {
00416 
00417 /*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00418 /*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
00419 /*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */
00420 
00421                 i__1 = *n + 1;
00422                 ztrtri_("L", diag, &k, &a[k + 1], &i__1, info);
00423                 if (*info > 0) {
00424                     return 0;
00425                 }
00426                 z__1.r = -1., z__1.i = -0.;
00427                 i__1 = *n + 1;
00428                 i__2 = *n + 1;
00429                 ztrmm_("L", "L", "C", diag, &k, &k, &z__1, &a[k + 1], &i__1, 
00430                         a, &i__2);
00431                 i__1 = *n + 1;
00432                 ztrtri_("U", diag, &k, &a[k], &i__1, info);
00433                 if (*info > 0) {
00434                     *info += k;
00435                 }
00436                 if (*info > 0) {
00437                     return 0;
00438                 }
00439                 i__1 = *n + 1;
00440                 i__2 = *n + 1;
00441                 ztrmm_("R", "U", "N", diag, &k, &k, &c_b1, &a[k], &i__1, a, &
00442                         i__2);
00443             }
00444         } else {
00445 
00446 /*           N is even and TRANSR = 'C' */
00447 
00448             if (lower) {
00449 
00450 /*              SRPA for LOWER, TRANSPOSE and N is even (see paper) */
00451 /*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
00452 /*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
00453 
00454                 ztrtri_("U", diag, &k, &a[k], &k, info);
00455                 if (*info > 0) {
00456                     return 0;
00457                 }
00458                 z__1.r = -1., z__1.i = -0.;
00459                 ztrmm_("L", "U", "N", diag, &k, &k, &z__1, &a[k], &k, &a[k * (
00460                         k + 1)], &k);
00461                 ztrtri_("L", diag, &k, a, &k, info);
00462                 if (*info > 0) {
00463                     *info += k;
00464                 }
00465                 if (*info > 0) {
00466                     return 0;
00467                 }
00468                 ztrmm_("R", "L", "C", diag, &k, &k, &c_b1, a, &k, &a[k * (k + 
00469                         1)], &k);
00470             } else {
00471 
00472 /*              SRPA for UPPER, TRANSPOSE and N is even (see paper) */
00473 /*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0) */
00474 /*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
00475 
00476                 ztrtri_("U", diag, &k, &a[k * (k + 1)], &k, info);
00477                 if (*info > 0) {
00478                     return 0;
00479                 }
00480                 z__1.r = -1., z__1.i = -0.;
00481                 ztrmm_("R", "U", "C", diag, &k, &k, &z__1, &a[k * (k + 1)], &
00482                         k, a, &k);
00483                 ztrtri_("L", diag, &k, &a[k * k], &k, info);
00484                 if (*info > 0) {
00485                     *info += k;
00486                 }
00487                 if (*info > 0) {
00488                     return 0;
00489                 }
00490                 ztrmm_("L", "L", "N", diag, &k, &k, &c_b1, &a[k * k], &k, a, &
00491                         k);
00492             }
00493         }
00494     }
00495 
00496     return 0;
00497 
00498 /*     End of ZTFTRI */
00499 
00500 } /* ztftri_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:43