00001 /* ztbt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublecomplex c_b12 = {-1.,0.}; 00020 00021 /* Subroutine */ int ztbt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *kd, integer *nrhs, doublecomplex *ab, integer *ldab, 00023 doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, 00024 doublecomplex *work, doublereal *rwork, doublereal *resid) 00025 { 00026 /* System generated locals */ 00027 integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps; 00033 extern logical lsame_(char *, char *); 00034 doublereal anorm, bnorm; 00035 extern /* Subroutine */ int ztbmv_(char *, char *, char *, integer *, 00036 integer *, doublecomplex *, integer *, doublecomplex *, integer *); 00037 doublereal xnorm; 00038 extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 00039 doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 00040 doublecomplex *, integer *, doublecomplex *, integer *); 00041 extern doublereal dlamch_(char *), zlantb_(char *, char *, char *, 00042 integer *, integer *, doublecomplex *, integer *, doublereal *), dzasum_(integer *, doublecomplex *, 00043 integer *); 00044 00045 00046 /* -- LAPACK test routine (version 3.1) -- */ 00047 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00048 /* November 2006 */ 00049 00050 /* .. Scalar Arguments .. */ 00051 /* .. */ 00052 /* .. Array Arguments .. */ 00053 /* .. */ 00054 00055 /* Purpose */ 00056 /* ======= */ 00057 00058 /* ZTBT02 computes the residual for the computed solution to a */ 00059 /* triangular system of linear equations A*x = b, A**T *x = b, or */ 00060 /* A**H *x = b when A is a triangular band matrix. Here A**T denotes */ 00061 /* the transpose of A, A**H denotes the conjugate transpose of A, and */ 00062 /* x and b are N by NRHS matrices. The test ratio is the maximum over */ 00063 /* the number of right hand sides of */ 00064 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00065 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00066 00067 /* Arguments */ 00068 /* ========= */ 00069 00070 /* UPLO (input) CHARACTER*1 */ 00071 /* Specifies whether the matrix A is upper or lower triangular. */ 00072 /* = 'U': Upper triangular */ 00073 /* = 'L': Lower triangular */ 00074 00075 /* TRANS (input) CHARACTER*1 */ 00076 /* Specifies the operation applied to A. */ 00077 /* = 'N': A *x = b (No transpose) */ 00078 /* = 'T': A**T *x = b (Transpose) */ 00079 /* = 'C': A**H *x = b (Conjugate transpose) */ 00080 00081 /* DIAG (input) CHARACTER*1 */ 00082 /* Specifies whether or not the matrix A is unit triangular. */ 00083 /* = 'N': Non-unit triangular */ 00084 /* = 'U': Unit triangular */ 00085 00086 /* N (input) INTEGER */ 00087 /* The order of the matrix A. N >= 0. */ 00088 00089 /* KD (input) INTEGER */ 00090 /* The number of superdiagonals or subdiagonals of the */ 00091 /* triangular band matrix A. KD >= 0. */ 00092 00093 /* NRHS (input) INTEGER */ 00094 /* The number of right hand sides, i.e., the number of columns */ 00095 /* of the matrices X and B. NRHS >= 0. */ 00096 00097 /* AB (input) COMPLEX*16 array, dimension (LDA,N) */ 00098 /* The upper or lower triangular band matrix A, stored in the */ 00099 /* first kd+1 rows of the array. The j-th column of A is stored */ 00100 /* in the j-th column of the array AB as follows: */ 00101 /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ 00102 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ 00103 00104 /* LDAB (input) INTEGER */ 00105 /* The leading dimension of the array AB. LDAB >= max(1,KD+1). */ 00106 00107 /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ 00108 /* The computed solution vectors for the system of linear */ 00109 /* equations. */ 00110 00111 /* LDX (input) INTEGER */ 00112 /* The leading dimension of the array X. LDX >= max(1,N). */ 00113 00114 /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ 00115 /* The right hand side vectors for the system of linear */ 00116 /* equations. */ 00117 00118 /* LDB (input) INTEGER */ 00119 /* The leading dimension of the array B. LDB >= max(1,N). */ 00120 00121 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00122 00123 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00124 00125 /* RESID (output) DOUBLE PRECISION */ 00126 /* The maximum over the number of right hand sides of */ 00127 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00128 00129 /* ===================================================================== */ 00130 00131 /* .. Parameters .. */ 00132 /* .. */ 00133 /* .. Local Scalars .. */ 00134 /* .. */ 00135 /* .. External Functions .. */ 00136 /* .. */ 00137 /* .. External Subroutines .. */ 00138 /* .. */ 00139 /* .. Intrinsic Functions .. */ 00140 /* .. */ 00141 /* .. Executable Statements .. */ 00142 00143 /* Quick exit if N = 0 or NRHS = 0 */ 00144 00145 /* Parameter adjustments */ 00146 ab_dim1 = *ldab; 00147 ab_offset = 1 + ab_dim1; 00148 ab -= ab_offset; 00149 x_dim1 = *ldx; 00150 x_offset = 1 + x_dim1; 00151 x -= x_offset; 00152 b_dim1 = *ldb; 00153 b_offset = 1 + b_dim1; 00154 b -= b_offset; 00155 --work; 00156 --rwork; 00157 00158 /* Function Body */ 00159 if (*n <= 0 || *nrhs <= 0) { 00160 *resid = 0.; 00161 return 0; 00162 } 00163 00164 /* Compute the 1-norm of A or A'. */ 00165 00166 if (lsame_(trans, "N")) { 00167 anorm = zlantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &rwork[ 00168 1]); 00169 } else { 00170 anorm = zlantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &rwork[ 00171 1]); 00172 } 00173 00174 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00175 00176 eps = dlamch_("Epsilon"); 00177 if (anorm <= 0.) { 00178 *resid = 1. / eps; 00179 return 0; 00180 } 00181 00182 /* Compute the maximum over the number of right hand sides of */ 00183 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00184 00185 *resid = 0.; 00186 i__1 = *nrhs; 00187 for (j = 1; j <= i__1; ++j) { 00188 zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00189 ztbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & 00190 c__1); 00191 zaxpy_(n, &c_b12, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00192 bnorm = dzasum_(n, &work[1], &c__1); 00193 xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); 00194 if (xnorm <= 0.) { 00195 *resid = 1. / eps; 00196 } else { 00197 /* Computing MAX */ 00198 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00199 *resid = max(d__1,d__2); 00200 } 00201 /* L10: */ 00202 } 00203 00204 return 0; 00205 00206 /* End of ZTBT02 */ 00207 00208 } /* ztbt02_ */