00001 /* zstemr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublereal c_b18 = .001; 00020 00021 /* Subroutine */ int zstemr_(char *jobz, char *range, integer *n, doublereal * 00022 d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 00023 integer *iu, integer *m, doublereal *w, doublecomplex *z__, integer * 00024 ldz, integer *nzc, integer *isuppz, logical *tryrac, doublereal *work, 00025 integer *lwork, integer *iwork, integer *liwork, integer *info) 00026 { 00027 /* System generated locals */ 00028 integer z_dim1, z_offset, i__1, i__2; 00029 doublereal d__1, d__2; 00030 00031 /* Builtin functions */ 00032 double sqrt(doublereal); 00033 00034 /* Local variables */ 00035 integer i__, j; 00036 doublereal r1, r2; 00037 integer jj; 00038 doublereal cs; 00039 integer in; 00040 doublereal sn, wl, wu; 00041 integer iil, iiu; 00042 doublereal eps, tmp; 00043 integer indd, iend, jblk, wend; 00044 doublereal rmin, rmax; 00045 integer itmp; 00046 doublereal tnrm; 00047 extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 00048 *, doublereal *, doublereal *); 00049 integer inde2, itmp2; 00050 doublereal rtol1, rtol2; 00051 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00052 integer *); 00053 doublereal scale; 00054 integer indgp; 00055 extern logical lsame_(char *, char *); 00056 integer iinfo, iindw, ilast; 00057 extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 00058 doublereal *, integer *); 00059 integer lwmin; 00060 logical wantz; 00061 extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 00062 doublecomplex *, integer *), dlaev2_(doublereal *, doublereal *, 00063 doublereal *, doublereal *, doublereal *, doublereal *, 00064 doublereal *); 00065 extern doublereal dlamch_(char *); 00066 logical alleig; 00067 integer ibegin; 00068 logical indeig; 00069 integer iindbl; 00070 logical valeig; 00071 extern /* Subroutine */ int dlarrc_(char *, integer *, doublereal *, 00072 doublereal *, doublereal *, doublereal *, doublereal *, integer *, 00073 integer *, integer *, integer *), dlarre_(char *, 00074 integer *, doublereal *, doublereal *, integer *, integer *, 00075 doublereal *, doublereal *, doublereal *, doublereal *, 00076 doublereal *, doublereal *, integer *, integer *, integer *, 00077 doublereal *, doublereal *, doublereal *, integer *, integer *, 00078 doublereal *, doublereal *, doublereal *, integer *, integer *); 00079 integer wbegin; 00080 doublereal safmin; 00081 extern /* Subroutine */ int dlarrj_(integer *, doublereal *, doublereal *, 00082 integer *, integer *, doublereal *, integer *, doublereal *, 00083 doublereal *, doublereal *, integer *, doublereal *, doublereal *, 00084 integer *), xerbla_(char *, integer *); 00085 doublereal bignum; 00086 integer inderr, iindwk, indgrs, offset; 00087 extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); 00088 extern /* Subroutine */ int dlarrr_(integer *, doublereal *, doublereal *, 00089 integer *), dlasrt_(char *, integer *, doublereal *, integer *); 00090 doublereal thresh; 00091 integer iinspl, indwrk, ifirst, liwmin, nzcmin; 00092 doublereal pivmin; 00093 integer nsplit; 00094 doublereal smlnum; 00095 extern /* Subroutine */ int zlarrv_(integer *, doublereal *, doublereal *, 00096 doublereal *, doublereal *, doublereal *, integer *, integer *, 00097 integer *, integer *, doublereal *, doublereal *, doublereal *, 00098 doublereal *, doublereal *, doublereal *, integer *, integer *, 00099 doublereal *, doublecomplex *, integer *, integer *, doublereal *, 00100 integer *, integer *); 00101 logical lquery, zquery; 00102 00103 00104 /* -- LAPACK computational routine (version 3.2) -- */ 00105 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00106 /* November 2006 */ 00107 00108 /* .. Scalar Arguments .. */ 00109 /* .. */ 00110 /* .. Array Arguments .. */ 00111 /* .. */ 00112 00113 /* Purpose */ 00114 /* ======= */ 00115 00116 /* ZSTEMR computes selected eigenvalues and, optionally, eigenvectors */ 00117 /* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */ 00118 /* a well defined set of pairwise different real eigenvalues, the corresponding */ 00119 /* real eigenvectors are pairwise orthogonal. */ 00120 00121 /* The spectrum may be computed either completely or partially by specifying */ 00122 /* either an interval (VL,VU] or a range of indices IL:IU for the desired */ 00123 /* eigenvalues. */ 00124 00125 /* Depending on the number of desired eigenvalues, these are computed either */ 00126 /* by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */ 00127 /* computed by the use of various suitable L D L^T factorizations near clusters */ 00128 /* of close eigenvalues (referred to as RRRs, Relatively Robust */ 00129 /* Representations). An informal sketch of the algorithm follows. */ 00130 00131 /* For each unreduced block (submatrix) of T, */ 00132 /* (a) Compute T - sigma I = L D L^T, so that L and D */ 00133 /* define all the wanted eigenvalues to high relative accuracy. */ 00134 /* This means that small relative changes in the entries of D and L */ 00135 /* cause only small relative changes in the eigenvalues and */ 00136 /* eigenvectors. The standard (unfactored) representation of the */ 00137 /* tridiagonal matrix T does not have this property in general. */ 00138 /* (b) Compute the eigenvalues to suitable accuracy. */ 00139 /* If the eigenvectors are desired, the algorithm attains full */ 00140 /* accuracy of the computed eigenvalues only right before */ 00141 /* the corresponding vectors have to be computed, see steps c) and d). */ 00142 /* (c) For each cluster of close eigenvalues, select a new */ 00143 /* shift close to the cluster, find a new factorization, and refine */ 00144 /* the shifted eigenvalues to suitable accuracy. */ 00145 /* (d) For each eigenvalue with a large enough relative separation compute */ 00146 /* the corresponding eigenvector by forming a rank revealing twisted */ 00147 /* factorization. Go back to (c) for any clusters that remain. */ 00148 00149 /* For more details, see: */ 00150 /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */ 00151 /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */ 00152 /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */ 00153 /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */ 00154 /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */ 00155 /* 2004. Also LAPACK Working Note 154. */ 00156 /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */ 00157 /* tridiagonal eigenvalue/eigenvector problem", */ 00158 /* Computer Science Division Technical Report No. UCB/CSD-97-971, */ 00159 /* UC Berkeley, May 1997. */ 00160 00161 /* Notes: */ 00162 /* 1.ZSTEMR works only on machines which follow IEEE-754 */ 00163 /* floating-point standard in their handling of infinities and NaNs. */ 00164 /* This permits the use of efficient inner loops avoiding a check for */ 00165 /* zero divisors. */ 00166 00167 /* 2. LAPACK routines can be used to reduce a complex Hermitean matrix to */ 00168 /* real symmetric tridiagonal form. */ 00169 00170 /* (Any complex Hermitean tridiagonal matrix has real values on its diagonal */ 00171 /* and potentially complex numbers on its off-diagonals. By applying a */ 00172 /* similarity transform with an appropriate diagonal matrix */ 00173 /* diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean */ 00174 /* matrix can be transformed into a real symmetric matrix and complex */ 00175 /* arithmetic can be entirely avoided.) */ 00176 00177 /* While the eigenvectors of the real symmetric tridiagonal matrix are real, */ 00178 /* the eigenvectors of original complex Hermitean matrix have complex entries */ 00179 /* in general. */ 00180 /* Since LAPACK drivers overwrite the matrix data with the eigenvectors, */ 00181 /* ZSTEMR accepts complex workspace to facilitate interoperability */ 00182 /* with ZUNMTR or ZUPMTR. */ 00183 00184 /* Arguments */ 00185 /* ========= */ 00186 00187 /* JOBZ (input) CHARACTER*1 */ 00188 /* = 'N': Compute eigenvalues only; */ 00189 /* = 'V': Compute eigenvalues and eigenvectors. */ 00190 00191 /* RANGE (input) CHARACTER*1 */ 00192 /* = 'A': all eigenvalues will be found. */ 00193 /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ 00194 /* will be found. */ 00195 /* = 'I': the IL-th through IU-th eigenvalues will be found. */ 00196 00197 /* N (input) INTEGER */ 00198 /* The order of the matrix. N >= 0. */ 00199 00200 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00201 /* On entry, the N diagonal elements of the tridiagonal matrix */ 00202 /* T. On exit, D is overwritten. */ 00203 00204 /* E (input/output) DOUBLE PRECISION array, dimension (N) */ 00205 /* On entry, the (N-1) subdiagonal elements of the tridiagonal */ 00206 /* matrix T in elements 1 to N-1 of E. E(N) need not be set on */ 00207 /* input, but is used internally as workspace. */ 00208 /* On exit, E is overwritten. */ 00209 00210 /* VL (input) DOUBLE PRECISION */ 00211 /* VU (input) DOUBLE PRECISION */ 00212 /* If RANGE='V', the lower and upper bounds of the interval to */ 00213 /* be searched for eigenvalues. VL < VU. */ 00214 /* Not referenced if RANGE = 'A' or 'I'. */ 00215 00216 /* IL (input) INTEGER */ 00217 /* IU (input) INTEGER */ 00218 /* If RANGE='I', the indices (in ascending order) of the */ 00219 /* smallest and largest eigenvalues to be returned. */ 00220 /* 1 <= IL <= IU <= N, if N > 0. */ 00221 /* Not referenced if RANGE = 'A' or 'V'. */ 00222 00223 /* M (output) INTEGER */ 00224 /* The total number of eigenvalues found. 0 <= M <= N. */ 00225 /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ 00226 00227 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00228 /* The first M elements contain the selected eigenvalues in */ 00229 /* ascending order. */ 00230 00231 /* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) ) */ 00232 /* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */ 00233 /* contain the orthonormal eigenvectors of the matrix T */ 00234 /* corresponding to the selected eigenvalues, with the i-th */ 00235 /* column of Z holding the eigenvector associated with W(i). */ 00236 /* If JOBZ = 'N', then Z is not referenced. */ 00237 /* Note: the user must ensure that at least max(1,M) columns are */ 00238 /* supplied in the array Z; if RANGE = 'V', the exact value of M */ 00239 /* is not known in advance and can be computed with a workspace */ 00240 /* query by setting NZC = -1, see below. */ 00241 00242 /* LDZ (input) INTEGER */ 00243 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00244 /* JOBZ = 'V', then LDZ >= max(1,N). */ 00245 00246 /* NZC (input) INTEGER */ 00247 /* The number of eigenvectors to be held in the array Z. */ 00248 /* If RANGE = 'A', then NZC >= max(1,N). */ 00249 /* If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */ 00250 /* If RANGE = 'I', then NZC >= IU-IL+1. */ 00251 /* If NZC = -1, then a workspace query is assumed; the */ 00252 /* routine calculates the number of columns of the array Z that */ 00253 /* are needed to hold the eigenvectors. */ 00254 /* This value is returned as the first entry of the Z array, and */ 00255 /* no error message related to NZC is issued by XERBLA. */ 00256 00257 /* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */ 00258 /* The support of the eigenvectors in Z, i.e., the indices */ 00259 /* indicating the nonzero elements in Z. The i-th computed eigenvector */ 00260 /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ 00261 /* ISUPPZ( 2*i ). This is relevant in the case when the matrix */ 00262 /* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */ 00263 00264 /* TRYRAC (input/output) LOGICAL */ 00265 /* If TRYRAC.EQ..TRUE., indicates that the code should check whether */ 00266 /* the tridiagonal matrix defines its eigenvalues to high relative */ 00267 /* accuracy. If so, the code uses relative-accuracy preserving */ 00268 /* algorithms that might be (a bit) slower depending on the matrix. */ 00269 /* If the matrix does not define its eigenvalues to high relative */ 00270 /* accuracy, the code can uses possibly faster algorithms. */ 00271 /* If TRYRAC.EQ..FALSE., the code is not required to guarantee */ 00272 /* relatively accurate eigenvalues and can use the fastest possible */ 00273 /* techniques. */ 00274 /* On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */ 00275 /* does not define its eigenvalues to high relative accuracy. */ 00276 00277 /* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */ 00278 /* On exit, if INFO = 0, WORK(1) returns the optimal */ 00279 /* (and minimal) LWORK. */ 00280 00281 /* LWORK (input) INTEGER */ 00282 /* The dimension of the array WORK. LWORK >= max(1,18*N) */ 00283 /* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */ 00284 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00285 /* only calculates the optimal size of the WORK array, returns */ 00286 /* this value as the first entry of the WORK array, and no error */ 00287 /* message related to LWORK is issued by XERBLA. */ 00288 00289 /* IWORK (workspace/output) INTEGER array, dimension (LIWORK) */ 00290 /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ 00291 00292 /* LIWORK (input) INTEGER */ 00293 /* The dimension of the array IWORK. LIWORK >= max(1,10*N) */ 00294 /* if the eigenvectors are desired, and LIWORK >= max(1,8*N) */ 00295 /* if only the eigenvalues are to be computed. */ 00296 /* If LIWORK = -1, then a workspace query is assumed; the */ 00297 /* routine only calculates the optimal size of the IWORK array, */ 00298 /* returns this value as the first entry of the IWORK array, and */ 00299 /* no error message related to LIWORK is issued by XERBLA. */ 00300 00301 /* INFO (output) INTEGER */ 00302 /* On exit, INFO */ 00303 /* = 0: successful exit */ 00304 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00305 /* > 0: if INFO = 1X, internal error in DLARRE, */ 00306 /* if INFO = 2X, internal error in ZLARRV. */ 00307 /* Here, the digit X = ABS( IINFO ) < 10, where IINFO is */ 00308 /* the nonzero error code returned by DLARRE or */ 00309 /* ZLARRV, respectively. */ 00310 00311 00312 /* Further Details */ 00313 /* =============== */ 00314 00315 /* Based on contributions by */ 00316 /* Beresford Parlett, University of California, Berkeley, USA */ 00317 /* Jim Demmel, University of California, Berkeley, USA */ 00318 /* Inderjit Dhillon, University of Texas, Austin, USA */ 00319 /* Osni Marques, LBNL/NERSC, USA */ 00320 /* Christof Voemel, University of California, Berkeley, USA */ 00321 00322 /* ===================================================================== */ 00323 00324 /* .. Parameters .. */ 00325 /* .. */ 00326 /* .. Local Scalars .. */ 00327 /* .. */ 00328 /* .. */ 00329 /* .. External Functions .. */ 00330 /* .. */ 00331 /* .. External Subroutines .. */ 00332 /* .. */ 00333 /* .. Intrinsic Functions .. */ 00334 /* .. */ 00335 /* .. Executable Statements .. */ 00336 00337 /* Test the input parameters. */ 00338 00339 /* Parameter adjustments */ 00340 --d__; 00341 --e; 00342 --w; 00343 z_dim1 = *ldz; 00344 z_offset = 1 + z_dim1; 00345 z__ -= z_offset; 00346 --isuppz; 00347 --work; 00348 --iwork; 00349 00350 /* Function Body */ 00351 wantz = lsame_(jobz, "V"); 00352 alleig = lsame_(range, "A"); 00353 valeig = lsame_(range, "V"); 00354 indeig = lsame_(range, "I"); 00355 00356 lquery = *lwork == -1 || *liwork == -1; 00357 zquery = *nzc == -1; 00358 /* DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */ 00359 /* In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */ 00360 /* Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N. */ 00361 if (wantz) { 00362 lwmin = *n * 18; 00363 liwmin = *n * 10; 00364 } else { 00365 /* need less workspace if only the eigenvalues are wanted */ 00366 lwmin = *n * 12; 00367 liwmin = *n << 3; 00368 } 00369 wl = 0.; 00370 wu = 0.; 00371 iil = 0; 00372 iiu = 0; 00373 if (valeig) { 00374 /* We do not reference VL, VU in the cases RANGE = 'I','A' */ 00375 /* The interval (WL, WU] contains all the wanted eigenvalues. */ 00376 /* It is either given by the user or computed in DLARRE. */ 00377 wl = *vl; 00378 wu = *vu; 00379 } else if (indeig) { 00380 /* We do not reference IL, IU in the cases RANGE = 'V','A' */ 00381 iil = *il; 00382 iiu = *iu; 00383 } 00384 00385 *info = 0; 00386 if (! (wantz || lsame_(jobz, "N"))) { 00387 *info = -1; 00388 } else if (! (alleig || valeig || indeig)) { 00389 *info = -2; 00390 } else if (*n < 0) { 00391 *info = -3; 00392 } else if (valeig && *n > 0 && wu <= wl) { 00393 *info = -7; 00394 } else if (indeig && (iil < 1 || iil > *n)) { 00395 *info = -8; 00396 } else if (indeig && (iiu < iil || iiu > *n)) { 00397 *info = -9; 00398 } else if (*ldz < 1 || wantz && *ldz < *n) { 00399 *info = -13; 00400 } else if (*lwork < lwmin && ! lquery) { 00401 *info = -17; 00402 } else if (*liwork < liwmin && ! lquery) { 00403 *info = -19; 00404 } 00405 00406 /* Get machine constants. */ 00407 00408 safmin = dlamch_("Safe minimum"); 00409 eps = dlamch_("Precision"); 00410 smlnum = safmin / eps; 00411 bignum = 1. / smlnum; 00412 rmin = sqrt(smlnum); 00413 /* Computing MIN */ 00414 d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); 00415 rmax = min(d__1,d__2); 00416 00417 if (*info == 0) { 00418 work[1] = (doublereal) lwmin; 00419 iwork[1] = liwmin; 00420 00421 if (wantz && alleig) { 00422 nzcmin = *n; 00423 } else if (wantz && valeig) { 00424 dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, & 00425 itmp2, info); 00426 } else if (wantz && indeig) { 00427 nzcmin = iiu - iil + 1; 00428 } else { 00429 /* WANTZ .EQ. FALSE. */ 00430 nzcmin = 0; 00431 } 00432 if (zquery && *info == 0) { 00433 i__1 = z_dim1 + 1; 00434 z__[i__1].r = (doublereal) nzcmin, z__[i__1].i = 0.; 00435 } else if (*nzc < nzcmin && ! zquery) { 00436 *info = -14; 00437 } 00438 } 00439 if (*info != 0) { 00440 00441 i__1 = -(*info); 00442 xerbla_("ZSTEMR", &i__1); 00443 00444 return 0; 00445 } else if (lquery || zquery) { 00446 return 0; 00447 } 00448 00449 /* Handle N = 0, 1, and 2 cases immediately */ 00450 00451 *m = 0; 00452 if (*n == 0) { 00453 return 0; 00454 } 00455 00456 if (*n == 1) { 00457 if (alleig || indeig) { 00458 *m = 1; 00459 w[1] = d__[1]; 00460 } else { 00461 if (wl < d__[1] && wu >= d__[1]) { 00462 *m = 1; 00463 w[1] = d__[1]; 00464 } 00465 } 00466 if (wantz && ! zquery) { 00467 i__1 = z_dim1 + 1; 00468 z__[i__1].r = 1., z__[i__1].i = 0.; 00469 isuppz[1] = 1; 00470 isuppz[2] = 1; 00471 } 00472 return 0; 00473 } 00474 00475 if (*n == 2) { 00476 if (! wantz) { 00477 dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2); 00478 } else if (wantz && ! zquery) { 00479 dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn); 00480 } 00481 if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) { 00482 ++(*m); 00483 w[*m] = r2; 00484 if (wantz && ! zquery) { 00485 i__1 = *m * z_dim1 + 1; 00486 d__1 = -sn; 00487 z__[i__1].r = d__1, z__[i__1].i = 0.; 00488 i__1 = *m * z_dim1 + 2; 00489 z__[i__1].r = cs, z__[i__1].i = 0.; 00490 /* Note: At most one of SN and CS can be zero. */ 00491 if (sn != 0.) { 00492 if (cs != 0.) { 00493 isuppz[(*m << 1) - 1] = 1; 00494 isuppz[(*m << 1) - 1] = 2; 00495 } else { 00496 isuppz[(*m << 1) - 1] = 1; 00497 isuppz[(*m << 1) - 1] = 1; 00498 } 00499 } else { 00500 isuppz[(*m << 1) - 1] = 2; 00501 isuppz[*m * 2] = 2; 00502 } 00503 } 00504 } 00505 if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) { 00506 ++(*m); 00507 w[*m] = r1; 00508 if (wantz && ! zquery) { 00509 i__1 = *m * z_dim1 + 1; 00510 z__[i__1].r = cs, z__[i__1].i = 0.; 00511 i__1 = *m * z_dim1 + 2; 00512 z__[i__1].r = sn, z__[i__1].i = 0.; 00513 /* Note: At most one of SN and CS can be zero. */ 00514 if (sn != 0.) { 00515 if (cs != 0.) { 00516 isuppz[(*m << 1) - 1] = 1; 00517 isuppz[(*m << 1) - 1] = 2; 00518 } else { 00519 isuppz[(*m << 1) - 1] = 1; 00520 isuppz[(*m << 1) - 1] = 1; 00521 } 00522 } else { 00523 isuppz[(*m << 1) - 1] = 2; 00524 isuppz[*m * 2] = 2; 00525 } 00526 } 00527 } 00528 return 0; 00529 } 00530 /* Continue with general N */ 00531 indgrs = 1; 00532 inderr = (*n << 1) + 1; 00533 indgp = *n * 3 + 1; 00534 indd = (*n << 2) + 1; 00535 inde2 = *n * 5 + 1; 00536 indwrk = *n * 6 + 1; 00537 00538 iinspl = 1; 00539 iindbl = *n + 1; 00540 iindw = (*n << 1) + 1; 00541 iindwk = *n * 3 + 1; 00542 00543 /* Scale matrix to allowable range, if necessary. */ 00544 /* The allowable range is related to the PIVMIN parameter; see the */ 00545 /* comments in DLARRD. The preference for scaling small values */ 00546 /* up is heuristic; we expect users' matrices not to be close to the */ 00547 /* RMAX threshold. */ 00548 00549 scale = 1.; 00550 tnrm = dlanst_("M", n, &d__[1], &e[1]); 00551 if (tnrm > 0. && tnrm < rmin) { 00552 scale = rmin / tnrm; 00553 } else if (tnrm > rmax) { 00554 scale = rmax / tnrm; 00555 } 00556 if (scale != 1.) { 00557 dscal_(n, &scale, &d__[1], &c__1); 00558 i__1 = *n - 1; 00559 dscal_(&i__1, &scale, &e[1], &c__1); 00560 tnrm *= scale; 00561 if (valeig) { 00562 /* If eigenvalues in interval have to be found, */ 00563 /* scale (WL, WU] accordingly */ 00564 wl *= scale; 00565 wu *= scale; 00566 } 00567 } 00568 00569 /* Compute the desired eigenvalues of the tridiagonal after splitting */ 00570 /* into smaller subblocks if the corresponding off-diagonal elements */ 00571 /* are small */ 00572 /* THRESH is the splitting parameter for DLARRE */ 00573 /* A negative THRESH forces the old splitting criterion based on the */ 00574 /* size of the off-diagonal. A positive THRESH switches to splitting */ 00575 /* which preserves relative accuracy. */ 00576 00577 if (*tryrac) { 00578 /* Test whether the matrix warrants the more expensive relative approach. */ 00579 dlarrr_(n, &d__[1], &e[1], &iinfo); 00580 } else { 00581 /* The user does not care about relative accurately eigenvalues */ 00582 iinfo = -1; 00583 } 00584 /* Set the splitting criterion */ 00585 if (iinfo == 0) { 00586 thresh = eps; 00587 } else { 00588 thresh = -eps; 00589 /* relative accuracy is desired but T does not guarantee it */ 00590 *tryrac = FALSE_; 00591 } 00592 00593 if (*tryrac) { 00594 /* Copy original diagonal, needed to guarantee relative accuracy */ 00595 dcopy_(n, &d__[1], &c__1, &work[indd], &c__1); 00596 } 00597 /* Store the squares of the offdiagonal values of T */ 00598 i__1 = *n - 1; 00599 for (j = 1; j <= i__1; ++j) { 00600 /* Computing 2nd power */ 00601 d__1 = e[j]; 00602 work[inde2 + j - 1] = d__1 * d__1; 00603 /* L5: */ 00604 } 00605 /* Set the tolerance parameters for bisection */ 00606 if (! wantz) { 00607 /* DLARRE computes the eigenvalues to full precision. */ 00608 rtol1 = eps * 4.; 00609 rtol2 = eps * 4.; 00610 } else { 00611 /* DLARRE computes the eigenvalues to less than full precision. */ 00612 /* ZLARRV will refine the eigenvalue approximations, and we only */ 00613 /* need less accurate initial bisection in DLARRE. */ 00614 /* Note: these settings do only affect the subset case and DLARRE */ 00615 rtol1 = sqrt(eps); 00616 /* Computing MAX */ 00617 d__1 = sqrt(eps) * .005, d__2 = eps * 4.; 00618 rtol2 = max(d__1,d__2); 00619 } 00620 dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], & 00621 rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[ 00622 inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[ 00623 indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo); 00624 if (iinfo != 0) { 00625 *info = abs(iinfo) + 10; 00626 return 0; 00627 } 00628 /* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */ 00629 /* part of the spectrum. All desired eigenvalues are contained in */ 00630 /* (WL,WU] */ 00631 if (wantz) { 00632 00633 /* Compute the desired eigenvectors corresponding to the computed */ 00634 /* eigenvalues */ 00635 00636 zlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, & 00637 c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[ 00638 indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[ 00639 z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], & 00640 iinfo); 00641 if (iinfo != 0) { 00642 *info = abs(iinfo) + 20; 00643 return 0; 00644 } 00645 } else { 00646 /* DLARRE computes eigenvalues of the (shifted) root representation */ 00647 /* ZLARRV returns the eigenvalues of the unshifted matrix. */ 00648 /* However, if the eigenvectors are not desired by the user, we need */ 00649 /* to apply the corresponding shifts from DLARRE to obtain the */ 00650 /* eigenvalues of the original matrix. */ 00651 i__1 = *m; 00652 for (j = 1; j <= i__1; ++j) { 00653 itmp = iwork[iindbl + j - 1]; 00654 w[j] += e[iwork[iinspl + itmp - 1]]; 00655 /* L20: */ 00656 } 00657 } 00658 00659 if (*tryrac) { 00660 /* Refine computed eigenvalues so that they are relatively accurate */ 00661 /* with respect to the original matrix T. */ 00662 ibegin = 1; 00663 wbegin = 1; 00664 i__1 = iwork[iindbl + *m - 1]; 00665 for (jblk = 1; jblk <= i__1; ++jblk) { 00666 iend = iwork[iinspl + jblk - 1]; 00667 in = iend - ibegin + 1; 00668 wend = wbegin - 1; 00669 /* check if any eigenvalues have to be refined in this block */ 00670 L36: 00671 if (wend < *m) { 00672 if (iwork[iindbl + wend] == jblk) { 00673 ++wend; 00674 goto L36; 00675 } 00676 } 00677 if (wend < wbegin) { 00678 ibegin = iend + 1; 00679 goto L39; 00680 } 00681 offset = iwork[iindw + wbegin - 1] - 1; 00682 ifirst = iwork[iindw + wbegin - 1]; 00683 ilast = iwork[iindw + wend - 1]; 00684 rtol2 = eps * 4.; 00685 dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], 00686 &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[ 00687 inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], & 00688 pivmin, &tnrm, &iinfo); 00689 ibegin = iend + 1; 00690 wbegin = wend + 1; 00691 L39: 00692 ; 00693 } 00694 } 00695 00696 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00697 00698 if (scale != 1.) { 00699 d__1 = 1. / scale; 00700 dscal_(m, &d__1, &w[1], &c__1); 00701 } 00702 00703 /* If eigenvalues are not in increasing order, then sort them, */ 00704 /* possibly along with eigenvectors. */ 00705 00706 if (nsplit > 1) { 00707 if (! wantz) { 00708 dlasrt_("I", m, &w[1], &iinfo); 00709 if (iinfo != 0) { 00710 *info = 3; 00711 return 0; 00712 } 00713 } else { 00714 i__1 = *m - 1; 00715 for (j = 1; j <= i__1; ++j) { 00716 i__ = 0; 00717 tmp = w[j]; 00718 i__2 = *m; 00719 for (jj = j + 1; jj <= i__2; ++jj) { 00720 if (w[jj] < tmp) { 00721 i__ = jj; 00722 tmp = w[jj]; 00723 } 00724 /* L50: */ 00725 } 00726 if (i__ != 0) { 00727 w[i__] = w[j]; 00728 w[j] = tmp; 00729 if (wantz) { 00730 zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 00731 z_dim1 + 1], &c__1); 00732 itmp = isuppz[(i__ << 1) - 1]; 00733 isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1]; 00734 isuppz[(j << 1) - 1] = itmp; 00735 itmp = isuppz[i__ * 2]; 00736 isuppz[i__ * 2] = isuppz[j * 2]; 00737 isuppz[j * 2] = itmp; 00738 } 00739 } 00740 /* L60: */ 00741 } 00742 } 00743 } 00744 00745 00746 work[1] = (doublereal) lwmin; 00747 iwork[1] = liwmin; 00748 return 0; 00749 00750 /* End of ZSTEMR */ 00751 00752 } /* zstemr_ */