00001 /* zpteqr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublecomplex c_b1 = {0.,0.}; 00019 static doublecomplex c_b2 = {1.,0.}; 00020 static integer c__0 = 0; 00021 static integer c__1 = 1; 00022 00023 /* Subroutine */ int zpteqr_(char *compz, integer *n, doublereal *d__, 00024 doublereal *e, doublecomplex *z__, integer *ldz, doublereal *work, 00025 integer *info) 00026 { 00027 /* System generated locals */ 00028 integer z_dim1, z_offset, i__1; 00029 00030 /* Builtin functions */ 00031 double sqrt(doublereal); 00032 00033 /* Local variables */ 00034 doublecomplex c__[1] /* was [1][1] */; 00035 integer i__; 00036 doublecomplex vt[1] /* was [1][1] */; 00037 integer nru; 00038 extern logical lsame_(char *, char *); 00039 extern /* Subroutine */ int xerbla_(char *, integer *); 00040 integer icompz; 00041 extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 00042 doublecomplex *, doublecomplex *, doublecomplex *, integer *), dpttrf_(integer *, doublereal *, doublereal *, integer *) 00043 , zbdsqr_(char *, integer *, integer *, integer *, integer *, 00044 doublereal *, doublereal *, doublecomplex *, integer *, 00045 doublecomplex *, integer *, doublecomplex *, integer *, 00046 doublereal *, integer *); 00047 00048 00049 /* -- LAPACK routine (version 3.2) -- */ 00050 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00051 /* November 2006 */ 00052 00053 /* .. Scalar Arguments .. */ 00054 /* .. */ 00055 /* .. Array Arguments .. */ 00056 /* .. */ 00057 00058 /* Purpose */ 00059 /* ======= */ 00060 00061 /* ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a */ 00062 /* symmetric positive definite tridiagonal matrix by first factoring the */ 00063 /* matrix using DPTTRF and then calling ZBDSQR to compute the singular */ 00064 /* values of the bidiagonal factor. */ 00065 00066 /* This routine computes the eigenvalues of the positive definite */ 00067 /* tridiagonal matrix to high relative accuracy. This means that if the */ 00068 /* eigenvalues range over many orders of magnitude in size, then the */ 00069 /* small eigenvalues and corresponding eigenvectors will be computed */ 00070 /* more accurately than, for example, with the standard QR method. */ 00071 00072 /* The eigenvectors of a full or band positive definite Hermitian matrix */ 00073 /* can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to */ 00074 /* reduce this matrix to tridiagonal form. (The reduction to */ 00075 /* tridiagonal form, however, may preclude the possibility of obtaining */ 00076 /* high relative accuracy in the small eigenvalues of the original */ 00077 /* matrix, if these eigenvalues range over many orders of magnitude.) */ 00078 00079 /* Arguments */ 00080 /* ========= */ 00081 00082 /* COMPZ (input) CHARACTER*1 */ 00083 /* = 'N': Compute eigenvalues only. */ 00084 /* = 'V': Compute eigenvectors of original Hermitian */ 00085 /* matrix also. Array Z contains the unitary matrix */ 00086 /* used to reduce the original matrix to tridiagonal */ 00087 /* form. */ 00088 /* = 'I': Compute eigenvectors of tridiagonal matrix also. */ 00089 00090 /* N (input) INTEGER */ 00091 /* The order of the matrix. N >= 0. */ 00092 00093 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00094 /* On entry, the n diagonal elements of the tridiagonal matrix. */ 00095 /* On normal exit, D contains the eigenvalues, in descending */ 00096 /* order. */ 00097 00098 /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */ 00099 /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ 00100 /* matrix. */ 00101 /* On exit, E has been destroyed. */ 00102 00103 /* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) */ 00104 /* On entry, if COMPZ = 'V', the unitary matrix used in the */ 00105 /* reduction to tridiagonal form. */ 00106 /* On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */ 00107 /* original Hermitian matrix; */ 00108 /* if COMPZ = 'I', the orthonormal eigenvectors of the */ 00109 /* tridiagonal matrix. */ 00110 /* If INFO > 0 on exit, Z contains the eigenvectors associated */ 00111 /* with only the stored eigenvalues. */ 00112 /* If COMPZ = 'N', then Z is not referenced. */ 00113 00114 /* LDZ (input) INTEGER */ 00115 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00116 /* COMPZ = 'V' or 'I', LDZ >= max(1,N). */ 00117 00118 /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ 00119 00120 /* INFO (output) INTEGER */ 00121 /* = 0: successful exit. */ 00122 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00123 /* > 0: if INFO = i, and i is: */ 00124 /* <= N the Cholesky factorization of the matrix could */ 00125 /* not be performed because the i-th principal minor */ 00126 /* was not positive definite. */ 00127 /* > N the SVD algorithm failed to converge; */ 00128 /* if INFO = N+i, i off-diagonal elements of the */ 00129 /* bidiagonal factor did not converge to zero. */ 00130 00131 /* ==================================================================== */ 00132 00133 /* .. Parameters .. */ 00134 /* .. */ 00135 /* .. External Functions .. */ 00136 /* .. */ 00137 /* .. External Subroutines .. */ 00138 /* .. */ 00139 /* .. Local Arrays .. */ 00140 /* .. */ 00141 /* .. Local Scalars .. */ 00142 /* .. */ 00143 /* .. Intrinsic Functions .. */ 00144 /* .. */ 00145 /* .. Executable Statements .. */ 00146 00147 /* Test the input parameters. */ 00148 00149 /* Parameter adjustments */ 00150 --d__; 00151 --e; 00152 z_dim1 = *ldz; 00153 z_offset = 1 + z_dim1; 00154 z__ -= z_offset; 00155 --work; 00156 00157 /* Function Body */ 00158 *info = 0; 00159 00160 if (lsame_(compz, "N")) { 00161 icompz = 0; 00162 } else if (lsame_(compz, "V")) { 00163 icompz = 1; 00164 } else if (lsame_(compz, "I")) { 00165 icompz = 2; 00166 } else { 00167 icompz = -1; 00168 } 00169 if (icompz < 0) { 00170 *info = -1; 00171 } else if (*n < 0) { 00172 *info = -2; 00173 } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { 00174 *info = -6; 00175 } 00176 if (*info != 0) { 00177 i__1 = -(*info); 00178 xerbla_("ZPTEQR", &i__1); 00179 return 0; 00180 } 00181 00182 /* Quick return if possible */ 00183 00184 if (*n == 0) { 00185 return 0; 00186 } 00187 00188 if (*n == 1) { 00189 if (icompz > 0) { 00190 i__1 = z_dim1 + 1; 00191 z__[i__1].r = 1., z__[i__1].i = 0.; 00192 } 00193 return 0; 00194 } 00195 if (icompz == 2) { 00196 zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz); 00197 } 00198 00199 /* Call DPTTRF to factor the matrix. */ 00200 00201 dpttrf_(n, &d__[1], &e[1], info); 00202 if (*info != 0) { 00203 return 0; 00204 } 00205 i__1 = *n; 00206 for (i__ = 1; i__ <= i__1; ++i__) { 00207 d__[i__] = sqrt(d__[i__]); 00208 /* L10: */ 00209 } 00210 i__1 = *n - 1; 00211 for (i__ = 1; i__ <= i__1; ++i__) { 00212 e[i__] *= d__[i__]; 00213 /* L20: */ 00214 } 00215 00216 /* Call ZBDSQR to compute the singular values/vectors of the */ 00217 /* bidiagonal factor. */ 00218 00219 if (icompz > 0) { 00220 nru = *n; 00221 } else { 00222 nru = 0; 00223 } 00224 zbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[ 00225 z_offset], ldz, c__, &c__1, &work[1], info); 00226 00227 /* Square the singular values. */ 00228 00229 if (*info == 0) { 00230 i__1 = *n; 00231 for (i__ = 1; i__ <= i__1; ++i__) { 00232 d__[i__] *= d__[i__]; 00233 /* L30: */ 00234 } 00235 } else { 00236 *info = *n + *info; 00237 } 00238 00239 return 0; 00240 00241 /* End of ZPTEQR */ 00242 00243 } /* zpteqr_ */