00001 /* zpptrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int zpptrs_(char *uplo, integer *n, integer *nrhs, 00021 doublecomplex *ap, doublecomplex *b, integer *ldb, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer b_dim1, b_offset, i__1; 00025 00026 /* Local variables */ 00027 integer i__; 00028 extern logical lsame_(char *, char *); 00029 logical upper; 00030 extern /* Subroutine */ int ztpsv_(char *, char *, char *, integer *, 00031 doublecomplex *, doublecomplex *, integer *), xerbla_(char *, integer *); 00032 00033 00034 /* -- LAPACK routine (version 3.2) -- */ 00035 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00036 /* November 2006 */ 00037 00038 /* .. Scalar Arguments .. */ 00039 /* .. */ 00040 /* .. Array Arguments .. */ 00041 /* .. */ 00042 00043 /* Purpose */ 00044 /* ======= */ 00045 00046 /* ZPPTRS solves a system of linear equations A*X = B with a Hermitian */ 00047 /* positive definite matrix A in packed storage using the Cholesky */ 00048 /* factorization A = U**H*U or A = L*L**H computed by ZPPTRF. */ 00049 00050 /* Arguments */ 00051 /* ========= */ 00052 00053 /* UPLO (input) CHARACTER*1 */ 00054 /* = 'U': Upper triangle of A is stored; */ 00055 /* = 'L': Lower triangle of A is stored. */ 00056 00057 /* N (input) INTEGER */ 00058 /* The order of the matrix A. N >= 0. */ 00059 00060 /* NRHS (input) INTEGER */ 00061 /* The number of right hand sides, i.e., the number of columns */ 00062 /* of the matrix B. NRHS >= 0. */ 00063 00064 /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00065 /* The triangular factor U or L from the Cholesky factorization */ 00066 /* A = U**H*U or A = L*L**H, packed columnwise in a linear */ 00067 /* array. The j-th column of U or L is stored in the array AP */ 00068 /* as follows: */ 00069 /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ 00070 /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ 00071 00072 /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ 00073 /* On entry, the right hand side matrix B. */ 00074 /* On exit, the solution matrix X. */ 00075 00076 /* LDB (input) INTEGER */ 00077 /* The leading dimension of the array B. LDB >= max(1,N). */ 00078 00079 /* INFO (output) INTEGER */ 00080 /* = 0: successful exit */ 00081 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00082 00083 /* ===================================================================== */ 00084 00085 /* .. Local Scalars .. */ 00086 /* .. */ 00087 /* .. External Functions .. */ 00088 /* .. */ 00089 /* .. External Subroutines .. */ 00090 /* .. */ 00091 /* .. Intrinsic Functions .. */ 00092 /* .. */ 00093 /* .. Executable Statements .. */ 00094 00095 /* Test the input parameters. */ 00096 00097 /* Parameter adjustments */ 00098 --ap; 00099 b_dim1 = *ldb; 00100 b_offset = 1 + b_dim1; 00101 b -= b_offset; 00102 00103 /* Function Body */ 00104 *info = 0; 00105 upper = lsame_(uplo, "U"); 00106 if (! upper && ! lsame_(uplo, "L")) { 00107 *info = -1; 00108 } else if (*n < 0) { 00109 *info = -2; 00110 } else if (*nrhs < 0) { 00111 *info = -3; 00112 } else if (*ldb < max(1,*n)) { 00113 *info = -6; 00114 } 00115 if (*info != 0) { 00116 i__1 = -(*info); 00117 xerbla_("ZPPTRS", &i__1); 00118 return 0; 00119 } 00120 00121 /* Quick return if possible */ 00122 00123 if (*n == 0 || *nrhs == 0) { 00124 return 0; 00125 } 00126 00127 if (upper) { 00128 00129 /* Solve A*X = B where A = U'*U. */ 00130 00131 i__1 = *nrhs; 00132 for (i__ = 1; i__ <= i__1; ++i__) { 00133 00134 /* Solve U'*X = B, overwriting B with X. */ 00135 00136 ztpsv_("Upper", "Conjugate transpose", "Non-unit", n, &ap[1], &b[ 00137 i__ * b_dim1 + 1], &c__1); 00138 00139 /* Solve U*X = B, overwriting B with X. */ 00140 00141 ztpsv_("Upper", "No transpose", "Non-unit", n, &ap[1], &b[i__ * 00142 b_dim1 + 1], &c__1); 00143 /* L10: */ 00144 } 00145 } else { 00146 00147 /* Solve A*X = B where A = L*L'. */ 00148 00149 i__1 = *nrhs; 00150 for (i__ = 1; i__ <= i__1; ++i__) { 00151 00152 /* Solve L*Y = B, overwriting B with X. */ 00153 00154 ztpsv_("Lower", "No transpose", "Non-unit", n, &ap[1], &b[i__ * 00155 b_dim1 + 1], &c__1); 00156 00157 /* Solve L'*X = Y, overwriting B with X. */ 00158 00159 ztpsv_("Lower", "Conjugate transpose", "Non-unit", n, &ap[1], &b[ 00160 i__ * b_dim1 + 1], &c__1); 00161 /* L20: */ 00162 } 00163 } 00164 00165 return 0; 00166 00167 /* End of ZPPTRS */ 00168 00169 } /* zpptrs_ */