zppt05.c
Go to the documentation of this file.
00001 /* zppt05.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int zppt05_(char *uplo, integer *n, integer *nrhs, 
00021         doublecomplex *ap, doublecomplex *b, integer *ldb, doublecomplex *x, 
00022         integer *ldx, doublecomplex *xact, integer *ldxact, doublereal *ferr, 
00023         doublereal *berr, doublereal *reslts)
00024 {
00025     /* System generated locals */
00026     integer b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, 
00027             i__2, i__3, i__4, i__5;
00028     doublereal d__1, d__2, d__3, d__4;
00029     doublecomplex z__1, z__2;
00030 
00031     /* Builtin functions */
00032     double d_imag(doublecomplex *);
00033 
00034     /* Local variables */
00035     integer i__, j, k, jc;
00036     doublereal eps, tmp, diff, axbi;
00037     integer imax;
00038     doublereal unfl, ovfl;
00039     extern logical lsame_(char *, char *);
00040     logical upper;
00041     doublereal xnorm;
00042     extern doublereal dlamch_(char *);
00043     doublereal errbnd;
00044     extern integer izamax_(integer *, doublecomplex *, integer *);
00045 
00046 
00047 /*  -- LAPACK test routine (version 3.1) -- */
00048 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00049 /*     November 2006 */
00050 
00051 /*     .. Scalar Arguments .. */
00052 /*     .. */
00053 /*     .. Array Arguments .. */
00054 /*     .. */
00055 
00056 /*  Purpose */
00057 /*  ======= */
00058 
00059 /*  ZPPT05 tests the error bounds from iterative refinement for the */
00060 /*  computed solution to a system of equations A*X = B, where A is a */
00061 /*  Hermitian matrix in packed storage format. */
00062 
00063 /*  RESLTS(1) = test of the error bound */
00064 /*            = norm(X - XACT) / ( norm(X) * FERR ) */
00065 
00066 /*  A large value is returned if this ratio is not less than one. */
00067 
00068 /*  RESLTS(2) = residual from the iterative refinement routine */
00069 /*            = the maximum of BERR / ( (n+1)*EPS + (*) ), where */
00070 /*              (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */
00071 
00072 /*  Arguments */
00073 /*  ========= */
00074 
00075 /*  UPLO    (input) CHARACTER*1 */
00076 /*          Specifies whether the upper or lower triangular part of the */
00077 /*          Hermitian matrix A is stored. */
00078 /*          = 'U':  Upper triangular */
00079 /*          = 'L':  Lower triangular */
00080 
00081 /*  N       (input) INTEGER */
00082 /*          The number of rows of the matrices X, B, and XACT, and the */
00083 /*          order of the matrix A.  N >= 0. */
00084 
00085 /*  NRHS    (input) INTEGER */
00086 /*          The number of columns of the matrices X, B, and XACT. */
00087 /*          NRHS >= 0. */
00088 
00089 /*  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
00090 /*          The upper or lower triangle of the Hermitian matrix A, packed */
00091 /*          columnwise in a linear array.  The j-th column of A is stored */
00092 /*          in the array AP as follows: */
00093 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
00094 /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
00095 
00096 /*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS) */
00097 /*          The right hand side vectors for the system of linear */
00098 /*          equations. */
00099 
00100 /*  LDB     (input) INTEGER */
00101 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00102 
00103 /*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS) */
00104 /*          The computed solution vectors.  Each vector is stored as a */
00105 /*          column of the matrix X. */
00106 
00107 /*  LDX     (input) INTEGER */
00108 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00109 
00110 /*  XACT    (input) COMPLEX*16 array, dimension (LDX,NRHS) */
00111 /*          The exact solution vectors.  Each vector is stored as a */
00112 /*          column of the matrix XACT. */
00113 
00114 /*  LDXACT  (input) INTEGER */
00115 /*          The leading dimension of the array XACT.  LDXACT >= max(1,N). */
00116 
00117 /*  FERR    (input) DOUBLE PRECISION array, dimension (NRHS) */
00118 /*          The estimated forward error bounds for each solution vector */
00119 /*          X.  If XTRUE is the true solution, FERR bounds the magnitude */
00120 /*          of the largest entry in (X - XTRUE) divided by the magnitude */
00121 /*          of the largest entry in X. */
00122 
00123 /*  BERR    (input) DOUBLE PRECISION array, dimension (NRHS) */
00124 /*          The componentwise relative backward error of each solution */
00125 /*          vector (i.e., the smallest relative change in any entry of A */
00126 /*          or B that makes X an exact solution). */
00127 
00128 /*  RESLTS  (output) DOUBLE PRECISION array, dimension (2) */
00129 /*          The maximum over the NRHS solution vectors of the ratios: */
00130 /*          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */
00131 /*          RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) */
00132 
00133 /*  ===================================================================== */
00134 
00135 /*     .. Parameters .. */
00136 /*     .. */
00137 /*     .. Local Scalars .. */
00138 /*     .. */
00139 /*     .. External Functions .. */
00140 /*     .. */
00141 /*     .. Intrinsic Functions .. */
00142 /*     .. */
00143 /*     .. Statement Functions .. */
00144 /*     .. */
00145 /*     .. Statement Function definitions .. */
00146 /*     .. */
00147 /*     .. Executable Statements .. */
00148 
00149 /*     Quick exit if N = 0 or NRHS = 0. */
00150 
00151     /* Parameter adjustments */
00152     --ap;
00153     b_dim1 = *ldb;
00154     b_offset = 1 + b_dim1;
00155     b -= b_offset;
00156     x_dim1 = *ldx;
00157     x_offset = 1 + x_dim1;
00158     x -= x_offset;
00159     xact_dim1 = *ldxact;
00160     xact_offset = 1 + xact_dim1;
00161     xact -= xact_offset;
00162     --ferr;
00163     --berr;
00164     --reslts;
00165 
00166     /* Function Body */
00167     if (*n <= 0 || *nrhs <= 0) {
00168         reslts[1] = 0.;
00169         reslts[2] = 0.;
00170         return 0;
00171     }
00172 
00173     eps = dlamch_("Epsilon");
00174     unfl = dlamch_("Safe minimum");
00175     ovfl = 1. / unfl;
00176     upper = lsame_(uplo, "U");
00177 
00178 /*     Test 1:  Compute the maximum of */
00179 /*        norm(X - XACT) / ( norm(X) * FERR ) */
00180 /*     over all the vectors X and XACT using the infinity-norm. */
00181 
00182     errbnd = 0.;
00183     i__1 = *nrhs;
00184     for (j = 1; j <= i__1; ++j) {
00185         imax = izamax_(n, &x[j * x_dim1 + 1], &c__1);
00186 /* Computing MAX */
00187         i__2 = imax + j * x_dim1;
00188         d__3 = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[imax + j * 
00189                 x_dim1]), abs(d__2));
00190         xnorm = max(d__3,unfl);
00191         diff = 0.;
00192         i__2 = *n;
00193         for (i__ = 1; i__ <= i__2; ++i__) {
00194             i__3 = i__ + j * x_dim1;
00195             i__4 = i__ + j * xact_dim1;
00196             z__2.r = x[i__3].r - xact[i__4].r, z__2.i = x[i__3].i - xact[i__4]
00197                     .i;
00198             z__1.r = z__2.r, z__1.i = z__2.i;
00199 /* Computing MAX */
00200             d__3 = diff, d__4 = (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&
00201                     z__1), abs(d__2));
00202             diff = max(d__3,d__4);
00203 /* L10: */
00204         }
00205 
00206         if (xnorm > 1.) {
00207             goto L20;
00208         } else if (diff <= ovfl * xnorm) {
00209             goto L20;
00210         } else {
00211             errbnd = 1. / eps;
00212             goto L30;
00213         }
00214 
00215 L20:
00216         if (diff / xnorm <= ferr[j]) {
00217 /* Computing MAX */
00218             d__1 = errbnd, d__2 = diff / xnorm / ferr[j];
00219             errbnd = max(d__1,d__2);
00220         } else {
00221             errbnd = 1. / eps;
00222         }
00223 L30:
00224         ;
00225     }
00226     reslts[1] = errbnd;
00227 
00228 /*     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where */
00229 /*     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */
00230 
00231     i__1 = *nrhs;
00232     for (k = 1; k <= i__1; ++k) {
00233         i__2 = *n;
00234         for (i__ = 1; i__ <= i__2; ++i__) {
00235             i__3 = i__ + k * b_dim1;
00236             tmp = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[i__ + k * 
00237                     b_dim1]), abs(d__2));
00238             if (upper) {
00239                 jc = (i__ - 1) * i__ / 2;
00240                 i__3 = i__ - 1;
00241                 for (j = 1; j <= i__3; ++j) {
00242                     i__4 = jc + j;
00243                     i__5 = j + k * x_dim1;
00244                     tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&
00245                             ap[jc + j]), abs(d__2))) * ((d__3 = x[i__5].r, 
00246                             abs(d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]), 
00247                             abs(d__4)));
00248 /* L40: */
00249                 }
00250                 i__3 = jc + i__;
00251                 i__4 = i__ + k * x_dim1;
00252                 tmp += (d__1 = ap[i__3].r, abs(d__1)) * ((d__2 = x[i__4].r, 
00253                         abs(d__2)) + (d__3 = d_imag(&x[i__ + k * x_dim1]), 
00254                         abs(d__3)));
00255                 jc = jc + i__ + i__;
00256                 i__3 = *n;
00257                 for (j = i__ + 1; j <= i__3; ++j) {
00258                     i__4 = jc;
00259                     i__5 = j + k * x_dim1;
00260                     tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&
00261                             ap[jc]), abs(d__2))) * ((d__3 = x[i__5].r, abs(
00262                             d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]), abs(
00263                             d__4)));
00264                     jc += j;
00265 /* L50: */
00266                 }
00267             } else {
00268                 jc = i__;
00269                 i__3 = i__ - 1;
00270                 for (j = 1; j <= i__3; ++j) {
00271                     i__4 = jc;
00272                     i__5 = j + k * x_dim1;
00273                     tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&
00274                             ap[jc]), abs(d__2))) * ((d__3 = x[i__5].r, abs(
00275                             d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]), abs(
00276                             d__4)));
00277                     jc = jc + *n - j;
00278 /* L60: */
00279                 }
00280                 i__3 = jc;
00281                 i__4 = i__ + k * x_dim1;
00282                 tmp += (d__1 = ap[i__3].r, abs(d__1)) * ((d__2 = x[i__4].r, 
00283                         abs(d__2)) + (d__3 = d_imag(&x[i__ + k * x_dim1]), 
00284                         abs(d__3)));
00285                 i__3 = *n;
00286                 for (j = i__ + 1; j <= i__3; ++j) {
00287                     i__4 = jc + j - i__;
00288                     i__5 = j + k * x_dim1;
00289                     tmp += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&
00290                             ap[jc + j - i__]), abs(d__2))) * ((d__3 = x[i__5]
00291                             .r, abs(d__3)) + (d__4 = d_imag(&x[j + k * x_dim1]
00292                             ), abs(d__4)));
00293 /* L70: */
00294                 }
00295             }
00296             if (i__ == 1) {
00297                 axbi = tmp;
00298             } else {
00299                 axbi = min(axbi,tmp);
00300             }
00301 /* L80: */
00302         }
00303 /* Computing MAX */
00304         d__1 = axbi, d__2 = (*n + 1) * unfl;
00305         tmp = berr[k] / ((*n + 1) * eps + (*n + 1) * unfl / max(d__1,d__2));
00306         if (k == 1) {
00307             reslts[2] = tmp;
00308         } else {
00309             reslts[2] = max(reslts[2],tmp);
00310         }
00311 /* L90: */
00312     }
00313 
00314     return 0;
00315 
00316 /*     End of ZPPT05 */
00317 
00318 } /* zppt05_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:43