zpbtrs.c
Go to the documentation of this file.
00001 /* zpbtrs.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int zpbtrs_(char *uplo, integer *n, integer *kd, integer *
00021         nrhs, doublecomplex *ab, integer *ldab, doublecomplex *b, integer *
00022         ldb, integer *info)
00023 {
00024     /* System generated locals */
00025     integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
00026 
00027     /* Local variables */
00028     integer j;
00029     extern logical lsame_(char *, char *);
00030     logical upper;
00031     extern /* Subroutine */ int ztbsv_(char *, char *, char *, integer *, 
00032             integer *, doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
00033 
00034 
00035 /*  -- LAPACK routine (version 3.2) -- */
00036 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00037 /*     November 2006 */
00038 
00039 /*     .. Scalar Arguments .. */
00040 /*     .. */
00041 /*     .. Array Arguments .. */
00042 /*     .. */
00043 
00044 /*  Purpose */
00045 /*  ======= */
00046 
00047 /*  ZPBTRS solves a system of linear equations A*X = B with a Hermitian */
00048 /*  positive definite band matrix A using the Cholesky factorization */
00049 /*  A = U**H*U or A = L*L**H computed by ZPBTRF. */
00050 
00051 /*  Arguments */
00052 /*  ========= */
00053 
00054 /*  UPLO    (input) CHARACTER*1 */
00055 /*          = 'U':  Upper triangular factor stored in AB; */
00056 /*          = 'L':  Lower triangular factor stored in AB. */
00057 
00058 /*  N       (input) INTEGER */
00059 /*          The order of the matrix A.  N >= 0. */
00060 
00061 /*  KD      (input) INTEGER */
00062 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
00063 /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
00064 
00065 /*  NRHS    (input) INTEGER */
00066 /*          The number of right hand sides, i.e., the number of columns */
00067 /*          of the matrix B.  NRHS >= 0. */
00068 
00069 /*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
00070 /*          The triangular factor U or L from the Cholesky factorization */
00071 /*          A = U**H*U or A = L*L**H of the band matrix A, stored in the */
00072 /*          first KD+1 rows of the array.  The j-th column of U or L is */
00073 /*          stored in the j-th column of the array AB as follows: */
00074 /*          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; */
00075 /*          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd). */
00076 
00077 /*  LDAB    (input) INTEGER */
00078 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00079 
00080 /*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
00081 /*          On entry, the right hand side matrix B. */
00082 /*          On exit, the solution matrix X. */
00083 
00084 /*  LDB     (input) INTEGER */
00085 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00086 
00087 /*  INFO    (output) INTEGER */
00088 /*          = 0:  successful exit */
00089 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00090 
00091 /*  ===================================================================== */
00092 
00093 /*     .. Local Scalars .. */
00094 /*     .. */
00095 /*     .. External Functions .. */
00096 /*     .. */
00097 /*     .. External Subroutines .. */
00098 /*     .. */
00099 /*     .. Intrinsic Functions .. */
00100 /*     .. */
00101 /*     .. Executable Statements .. */
00102 
00103 /*     Test the input parameters. */
00104 
00105     /* Parameter adjustments */
00106     ab_dim1 = *ldab;
00107     ab_offset = 1 + ab_dim1;
00108     ab -= ab_offset;
00109     b_dim1 = *ldb;
00110     b_offset = 1 + b_dim1;
00111     b -= b_offset;
00112 
00113     /* Function Body */
00114     *info = 0;
00115     upper = lsame_(uplo, "U");
00116     if (! upper && ! lsame_(uplo, "L")) {
00117         *info = -1;
00118     } else if (*n < 0) {
00119         *info = -2;
00120     } else if (*kd < 0) {
00121         *info = -3;
00122     } else if (*nrhs < 0) {
00123         *info = -4;
00124     } else if (*ldab < *kd + 1) {
00125         *info = -6;
00126     } else if (*ldb < max(1,*n)) {
00127         *info = -8;
00128     }
00129     if (*info != 0) {
00130         i__1 = -(*info);
00131         xerbla_("ZPBTRS", &i__1);
00132         return 0;
00133     }
00134 
00135 /*     Quick return if possible */
00136 
00137     if (*n == 0 || *nrhs == 0) {
00138         return 0;
00139     }
00140 
00141     if (upper) {
00142 
00143 /*        Solve A*X = B where A = U'*U. */
00144 
00145         i__1 = *nrhs;
00146         for (j = 1; j <= i__1; ++j) {
00147 
00148 /*           Solve U'*X = B, overwriting B with X. */
00149 
00150             ztbsv_("Upper", "Conjugate transpose", "Non-unit", n, kd, &ab[
00151                     ab_offset], ldab, &b[j * b_dim1 + 1], &c__1);
00152 
00153 /*           Solve U*X = B, overwriting B with X. */
00154 
00155             ztbsv_("Upper", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
00156                      ldab, &b[j * b_dim1 + 1], &c__1);
00157 /* L10: */
00158         }
00159     } else {
00160 
00161 /*        Solve A*X = B where A = L*L'. */
00162 
00163         i__1 = *nrhs;
00164         for (j = 1; j <= i__1; ++j) {
00165 
00166 /*           Solve L*X = B, overwriting B with X. */
00167 
00168             ztbsv_("Lower", "No transpose", "Non-unit", n, kd, &ab[ab_offset], 
00169                      ldab, &b[j * b_dim1 + 1], &c__1);
00170 
00171 /*           Solve L'*X = B, overwriting B with X. */
00172 
00173             ztbsv_("Lower", "Conjugate transpose", "Non-unit", n, kd, &ab[
00174                     ab_offset], ldab, &b[j * b_dim1 + 1], &c__1);
00175 /* L20: */
00176         }
00177     }
00178 
00179     return 0;
00180 
00181 /*     End of ZPBTRS */
00182 
00183 } /* zpbtrs_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:42