zpbsvx.c
Go to the documentation of this file.
00001 /* zpbsvx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int zpbsvx_(char *fact, char *uplo, integer *n, integer *kd, 
00021         integer *nrhs, doublecomplex *ab, integer *ldab, doublecomplex *afb, 
00022         integer *ldafb, char *equed, doublereal *s, doublecomplex *b, integer 
00023         *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *
00024         ferr, doublereal *berr, doublecomplex *work, doublereal *rwork, 
00025         integer *info)
00026 {
00027     /* System generated locals */
00028     integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
00029             x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
00030     doublereal d__1, d__2;
00031     doublecomplex z__1;
00032 
00033     /* Local variables */
00034     integer i__, j, j1, j2;
00035     doublereal amax, smin, smax;
00036     extern logical lsame_(char *, char *);
00037     doublereal scond, anorm;
00038     logical equil, rcequ, upper;
00039     extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
00040             doublecomplex *, integer *);
00041     extern doublereal dlamch_(char *);
00042     logical nofact;
00043     extern /* Subroutine */ int xerbla_(char *, integer *);
00044     extern doublereal zlanhb_(char *, char *, integer *, integer *, 
00045             doublecomplex *, integer *, doublereal *);
00046     doublereal bignum;
00047     extern /* Subroutine */ int zlaqhb_(char *, integer *, integer *, 
00048             doublecomplex *, integer *, doublereal *, doublereal *, 
00049             doublereal *, char *);
00050     integer infequ;
00051     extern /* Subroutine */ int zpbcon_(char *, integer *, integer *, 
00052             doublecomplex *, integer *, doublereal *, doublereal *, 
00053             doublecomplex *, doublereal *, integer *), zlacpy_(char *, 
00054              integer *, integer *, doublecomplex *, integer *, doublecomplex *
00055 , integer *), zpbequ_(char *, integer *, integer *, 
00056             doublecomplex *, integer *, doublereal *, doublereal *, 
00057             doublereal *, integer *), zpbrfs_(char *, integer *, 
00058             integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
00059              integer *, doublecomplex *, integer *, doublecomplex *, integer *
00060 , doublereal *, doublereal *, doublecomplex *, doublereal *, 
00061             integer *), zpbtrf_(char *, integer *, integer *, 
00062             doublecomplex *, integer *, integer *);
00063     doublereal smlnum;
00064     extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer 
00065             *, doublecomplex *, integer *, doublecomplex *, integer *, 
00066             integer *);
00067 
00068 
00069 /*  -- LAPACK driver routine (version 3.2) -- */
00070 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00071 /*     November 2006 */
00072 
00073 /*     .. Scalar Arguments .. */
00074 /*     .. */
00075 /*     .. Array Arguments .. */
00076 /*     .. */
00077 
00078 /*  Purpose */
00079 /*  ======= */
00080 
00081 /*  ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to */
00082 /*  compute the solution to a complex system of linear equations */
00083 /*     A * X = B, */
00084 /*  where A is an N-by-N Hermitian positive definite band matrix and X */
00085 /*  and B are N-by-NRHS matrices. */
00086 
00087 /*  Error bounds on the solution and a condition estimate are also */
00088 /*  provided. */
00089 
00090 /*  Description */
00091 /*  =========== */
00092 
00093 /*  The following steps are performed: */
00094 
00095 /*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
00096 /*     the system: */
00097 /*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
00098 /*     Whether or not the system will be equilibrated depends on the */
00099 /*     scaling of the matrix A, but if equilibration is used, A is */
00100 /*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
00101 
00102 /*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
00103 /*     factor the matrix A (after equilibration if FACT = 'E') as */
00104 /*        A = U**H * U,  if UPLO = 'U', or */
00105 /*        A = L * L**H,  if UPLO = 'L', */
00106 /*     where U is an upper triangular band matrix, and L is a lower */
00107 /*     triangular band matrix. */
00108 
00109 /*  3. If the leading i-by-i principal minor is not positive definite, */
00110 /*     then the routine returns with INFO = i. Otherwise, the factored */
00111 /*     form of A is used to estimate the condition number of the matrix */
00112 /*     A.  If the reciprocal of the condition number is less than machine */
00113 /*     precision, INFO = N+1 is returned as a warning, but the routine */
00114 /*     still goes on to solve for X and compute error bounds as */
00115 /*     described below. */
00116 
00117 /*  4. The system of equations is solved for X using the factored form */
00118 /*     of A. */
00119 
00120 /*  5. Iterative refinement is applied to improve the computed solution */
00121 /*     matrix and calculate error bounds and backward error estimates */
00122 /*     for it. */
00123 
00124 /*  6. If equilibration was used, the matrix X is premultiplied by */
00125 /*     diag(S) so that it solves the original system before */
00126 /*     equilibration. */
00127 
00128 /*  Arguments */
00129 /*  ========= */
00130 
00131 /*  FACT    (input) CHARACTER*1 */
00132 /*          Specifies whether or not the factored form of the matrix A is */
00133 /*          supplied on entry, and if not, whether the matrix A should be */
00134 /*          equilibrated before it is factored. */
00135 /*          = 'F':  On entry, AFB contains the factored form of A. */
00136 /*                  If EQUED = 'Y', the matrix A has been equilibrated */
00137 /*                  with scaling factors given by S.  AB and AFB will not */
00138 /*                  be modified. */
00139 /*          = 'N':  The matrix A will be copied to AFB and factored. */
00140 /*          = 'E':  The matrix A will be equilibrated if necessary, then */
00141 /*                  copied to AFB and factored. */
00142 
00143 /*  UPLO    (input) CHARACTER*1 */
00144 /*          = 'U':  Upper triangle of A is stored; */
00145 /*          = 'L':  Lower triangle of A is stored. */
00146 
00147 /*  N       (input) INTEGER */
00148 /*          The number of linear equations, i.e., the order of the */
00149 /*          matrix A.  N >= 0. */
00150 
00151 /*  KD      (input) INTEGER */
00152 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
00153 /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
00154 
00155 /*  NRHS    (input) INTEGER */
00156 /*          The number of right-hand sides, i.e., the number of columns */
00157 /*          of the matrices B and X.  NRHS >= 0. */
00158 
00159 /*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N) */
00160 /*          On entry, the upper or lower triangle of the Hermitian band */
00161 /*          matrix A, stored in the first KD+1 rows of the array, except */
00162 /*          if FACT = 'F' and EQUED = 'Y', then A must contain the */
00163 /*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A */
00164 /*          is stored in the j-th column of the array AB as follows: */
00165 /*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
00166 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). */
00167 /*          See below for further details. */
00168 
00169 /*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
00170 /*          diag(S)*A*diag(S). */
00171 
00172 /*  LDAB    (input) INTEGER */
00173 /*          The leading dimension of the array A.  LDAB >= KD+1. */
00174 
00175 /*  AFB     (input or output) COMPLEX*16 array, dimension (LDAFB,N) */
00176 /*          If FACT = 'F', then AFB is an input argument and on entry */
00177 /*          contains the triangular factor U or L from the Cholesky */
00178 /*          factorization A = U**H*U or A = L*L**H of the band matrix */
00179 /*          A, in the same storage format as A (see AB).  If EQUED = 'Y', */
00180 /*          then AFB is the factored form of the equilibrated matrix A. */
00181 
00182 /*          If FACT = 'N', then AFB is an output argument and on exit */
00183 /*          returns the triangular factor U or L from the Cholesky */
00184 /*          factorization A = U**H*U or A = L*L**H. */
00185 
00186 /*          If FACT = 'E', then AFB is an output argument and on exit */
00187 /*          returns the triangular factor U or L from the Cholesky */
00188 /*          factorization A = U**H*U or A = L*L**H of the equilibrated */
00189 /*          matrix A (see the description of A for the form of the */
00190 /*          equilibrated matrix). */
00191 
00192 /*  LDAFB   (input) INTEGER */
00193 /*          The leading dimension of the array AFB.  LDAFB >= KD+1. */
00194 
00195 /*  EQUED   (input or output) CHARACTER*1 */
00196 /*          Specifies the form of equilibration that was done. */
00197 /*          = 'N':  No equilibration (always true if FACT = 'N'). */
00198 /*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
00199 /*                  diag(S) * A * diag(S). */
00200 /*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
00201 /*          output argument. */
00202 
00203 /*  S       (input or output) DOUBLE PRECISION array, dimension (N) */
00204 /*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
00205 /*          an input argument if FACT = 'F'; otherwise, S is an output */
00206 /*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
00207 /*          must be positive. */
00208 
00209 /*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
00210 /*          On entry, the N-by-NRHS right hand side matrix B. */
00211 /*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
00212 /*          B is overwritten by diag(S) * B. */
00213 
00214 /*  LDB     (input) INTEGER */
00215 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00216 
00217 /*  X       (output) COMPLEX*16 array, dimension (LDX,NRHS) */
00218 /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
00219 /*          the original system of equations.  Note that if EQUED = 'Y', */
00220 /*          A and B are modified on exit, and the solution to the */
00221 /*          equilibrated system is inv(diag(S))*X. */
00222 
00223 /*  LDX     (input) INTEGER */
00224 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00225 
00226 /*  RCOND   (output) DOUBLE PRECISION */
00227 /*          The estimate of the reciprocal condition number of the matrix */
00228 /*          A after equilibration (if done).  If RCOND is less than the */
00229 /*          machine precision (in particular, if RCOND = 0), the matrix */
00230 /*          is singular to working precision.  This condition is */
00231 /*          indicated by a return code of INFO > 0. */
00232 
00233 /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
00234 /*          The estimated forward error bound for each solution vector */
00235 /*          X(j) (the j-th column of the solution matrix X). */
00236 /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
00237 /*          is an estimated upper bound for the magnitude of the largest */
00238 /*          element in (X(j) - XTRUE) divided by the magnitude of the */
00239 /*          largest element in X(j).  The estimate is as reliable as */
00240 /*          the estimate for RCOND, and is almost always a slight */
00241 /*          overestimate of the true error. */
00242 
00243 /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
00244 /*          The componentwise relative backward error of each solution */
00245 /*          vector X(j) (i.e., the smallest relative change in */
00246 /*          any element of A or B that makes X(j) an exact solution). */
00247 
00248 /*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */
00249 
00250 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */
00251 
00252 /*  INFO    (output) INTEGER */
00253 /*          = 0: successful exit */
00254 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00255 /*          > 0: if INFO = i, and i is */
00256 /*                <= N:  the leading minor of order i of A is */
00257 /*                       not positive definite, so the factorization */
00258 /*                       could not be completed, and the solution has not */
00259 /*                       been computed. RCOND = 0 is returned. */
00260 /*                = N+1: U is nonsingular, but RCOND is less than machine */
00261 /*                       precision, meaning that the matrix is singular */
00262 /*                       to working precision.  Nevertheless, the */
00263 /*                       solution and error bounds are computed because */
00264 /*                       there are a number of situations where the */
00265 /*                       computed solution can be more accurate than the */
00266 /*                       value of RCOND would suggest. */
00267 
00268 /*  Further Details */
00269 /*  =============== */
00270 
00271 /*  The band storage scheme is illustrated by the following example, when */
00272 /*  N = 6, KD = 2, and UPLO = 'U': */
00273 
00274 /*  Two-dimensional storage of the Hermitian matrix A: */
00275 
00276 /*     a11  a12  a13 */
00277 /*          a22  a23  a24 */
00278 /*               a33  a34  a35 */
00279 /*                    a44  a45  a46 */
00280 /*                         a55  a56 */
00281 /*     (aij=conjg(aji))         a66 */
00282 
00283 /*  Band storage of the upper triangle of A: */
00284 
00285 /*      *    *   a13  a24  a35  a46 */
00286 /*      *   a12  a23  a34  a45  a56 */
00287 /*     a11  a22  a33  a44  a55  a66 */
00288 
00289 /*  Similarly, if UPLO = 'L' the format of A is as follows: */
00290 
00291 /*     a11  a22  a33  a44  a55  a66 */
00292 /*     a21  a32  a43  a54  a65   * */
00293 /*     a31  a42  a53  a64   *    * */
00294 
00295 /*  Array elements marked * are not used by the routine. */
00296 
00297 /*  ===================================================================== */
00298 
00299 /*     .. Parameters .. */
00300 /*     .. */
00301 /*     .. Local Scalars .. */
00302 /*     .. */
00303 /*     .. External Functions .. */
00304 /*     .. */
00305 /*     .. External Subroutines .. */
00306 /*     .. */
00307 /*     .. Intrinsic Functions .. */
00308 /*     .. */
00309 /*     .. Executable Statements .. */
00310 
00311     /* Parameter adjustments */
00312     ab_dim1 = *ldab;
00313     ab_offset = 1 + ab_dim1;
00314     ab -= ab_offset;
00315     afb_dim1 = *ldafb;
00316     afb_offset = 1 + afb_dim1;
00317     afb -= afb_offset;
00318     --s;
00319     b_dim1 = *ldb;
00320     b_offset = 1 + b_dim1;
00321     b -= b_offset;
00322     x_dim1 = *ldx;
00323     x_offset = 1 + x_dim1;
00324     x -= x_offset;
00325     --ferr;
00326     --berr;
00327     --work;
00328     --rwork;
00329 
00330     /* Function Body */
00331     *info = 0;
00332     nofact = lsame_(fact, "N");
00333     equil = lsame_(fact, "E");
00334     upper = lsame_(uplo, "U");
00335     if (nofact || equil) {
00336         *(unsigned char *)equed = 'N';
00337         rcequ = FALSE_;
00338     } else {
00339         rcequ = lsame_(equed, "Y");
00340         smlnum = dlamch_("Safe minimum");
00341         bignum = 1. / smlnum;
00342     }
00343 
00344 /*     Test the input parameters. */
00345 
00346     if (! nofact && ! equil && ! lsame_(fact, "F")) {
00347         *info = -1;
00348     } else if (! upper && ! lsame_(uplo, "L")) {
00349         *info = -2;
00350     } else if (*n < 0) {
00351         *info = -3;
00352     } else if (*kd < 0) {
00353         *info = -4;
00354     } else if (*nrhs < 0) {
00355         *info = -5;
00356     } else if (*ldab < *kd + 1) {
00357         *info = -7;
00358     } else if (*ldafb < *kd + 1) {
00359         *info = -9;
00360     } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
00361             equed, "N"))) {
00362         *info = -10;
00363     } else {
00364         if (rcequ) {
00365             smin = bignum;
00366             smax = 0.;
00367             i__1 = *n;
00368             for (j = 1; j <= i__1; ++j) {
00369 /* Computing MIN */
00370                 d__1 = smin, d__2 = s[j];
00371                 smin = min(d__1,d__2);
00372 /* Computing MAX */
00373                 d__1 = smax, d__2 = s[j];
00374                 smax = max(d__1,d__2);
00375 /* L10: */
00376             }
00377             if (smin <= 0.) {
00378                 *info = -11;
00379             } else if (*n > 0) {
00380                 scond = max(smin,smlnum) / min(smax,bignum);
00381             } else {
00382                 scond = 1.;
00383             }
00384         }
00385         if (*info == 0) {
00386             if (*ldb < max(1,*n)) {
00387                 *info = -13;
00388             } else if (*ldx < max(1,*n)) {
00389                 *info = -15;
00390             }
00391         }
00392     }
00393 
00394     if (*info != 0) {
00395         i__1 = -(*info);
00396         xerbla_("ZPBSVX", &i__1);
00397         return 0;
00398     }
00399 
00400     if (equil) {
00401 
00402 /*        Compute row and column scalings to equilibrate the matrix A. */
00403 
00404         zpbequ_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, &
00405                 infequ);
00406         if (infequ == 0) {
00407 
00408 /*           Equilibrate the matrix. */
00409 
00410             zlaqhb_(uplo, n, kd, &ab[ab_offset], ldab, &s[1], &scond, &amax, 
00411                     equed);
00412             rcequ = lsame_(equed, "Y");
00413         }
00414     }
00415 
00416 /*     Scale the right-hand side. */
00417 
00418     if (rcequ) {
00419         i__1 = *nrhs;
00420         for (j = 1; j <= i__1; ++j) {
00421             i__2 = *n;
00422             for (i__ = 1; i__ <= i__2; ++i__) {
00423                 i__3 = i__ + j * b_dim1;
00424                 i__4 = i__;
00425                 i__5 = i__ + j * b_dim1;
00426                 z__1.r = s[i__4] * b[i__5].r, z__1.i = s[i__4] * b[i__5].i;
00427                 b[i__3].r = z__1.r, b[i__3].i = z__1.i;
00428 /* L20: */
00429             }
00430 /* L30: */
00431         }
00432     }
00433 
00434     if (nofact || equil) {
00435 
00436 /*        Compute the Cholesky factorization A = U'*U or A = L*L'. */
00437 
00438         if (upper) {
00439             i__1 = *n;
00440             for (j = 1; j <= i__1; ++j) {
00441 /* Computing MAX */
00442                 i__2 = j - *kd;
00443                 j1 = max(i__2,1);
00444                 i__2 = j - j1 + 1;
00445                 zcopy_(&i__2, &ab[*kd + 1 - j + j1 + j * ab_dim1], &c__1, &
00446                         afb[*kd + 1 - j + j1 + j * afb_dim1], &c__1);
00447 /* L40: */
00448             }
00449         } else {
00450             i__1 = *n;
00451             for (j = 1; j <= i__1; ++j) {
00452 /* Computing MIN */
00453                 i__2 = j + *kd;
00454                 j2 = min(i__2,*n);
00455                 i__2 = j2 - j + 1;
00456                 zcopy_(&i__2, &ab[j * ab_dim1 + 1], &c__1, &afb[j * afb_dim1 
00457                         + 1], &c__1);
00458 /* L50: */
00459             }
00460         }
00461 
00462         zpbtrf_(uplo, n, kd, &afb[afb_offset], ldafb, info);
00463 
00464 /*        Return if INFO is non-zero. */
00465 
00466         if (*info > 0) {
00467             *rcond = 0.;
00468             return 0;
00469         }
00470     }
00471 
00472 /*     Compute the norm of the matrix A. */
00473 
00474     anorm = zlanhb_("1", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
00475 
00476 /*     Compute the reciprocal of the condition number of A. */
00477 
00478     zpbcon_(uplo, n, kd, &afb[afb_offset], ldafb, &anorm, rcond, &work[1], &
00479             rwork[1], info);
00480 
00481 /*     Compute the solution matrix X. */
00482 
00483     zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
00484     zpbtrs_(uplo, n, kd, nrhs, &afb[afb_offset], ldafb, &x[x_offset], ldx, 
00485             info);
00486 
00487 /*     Use iterative refinement to improve the computed solution and */
00488 /*     compute error bounds and backward error estimates for it. */
00489 
00490     zpbrfs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, 
00491             &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
00492 , &rwork[1], info);
00493 
00494 /*     Transform the solution matrix X to a solution of the original */
00495 /*     system. */
00496 
00497     if (rcequ) {
00498         i__1 = *nrhs;
00499         for (j = 1; j <= i__1; ++j) {
00500             i__2 = *n;
00501             for (i__ = 1; i__ <= i__2; ++i__) {
00502                 i__3 = i__ + j * x_dim1;
00503                 i__4 = i__;
00504                 i__5 = i__ + j * x_dim1;
00505                 z__1.r = s[i__4] * x[i__5].r, z__1.i = s[i__4] * x[i__5].i;
00506                 x[i__3].r = z__1.r, x[i__3].i = z__1.i;
00507 /* L60: */
00508             }
00509 /* L70: */
00510         }
00511         i__1 = *nrhs;
00512         for (j = 1; j <= i__1; ++j) {
00513             ferr[j] /= scond;
00514 /* L80: */
00515         }
00516     }
00517 
00518 /*     Set INFO = N+1 if the matrix is singular to working precision. */
00519 
00520     if (*rcond < dlamch_("Epsilon")) {
00521         *info = *n + 1;
00522     }
00523 
00524     return 0;
00525 
00526 /*     End of ZPBSVX */
00527 
00528 } /* zpbsvx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:42