zlqt02.c
Go to the documentation of this file.
00001 /* zlqt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static doublecomplex c_b1 = {-1e10,-1e10};
00027 static doublecomplex c_b8 = {0.,0.};
00028 static doublecomplex c_b13 = {-1.,0.};
00029 static doublecomplex c_b14 = {1.,0.};
00030 static doublereal c_b22 = -1.;
00031 static doublereal c_b23 = 1.;
00032 
00033 /* Subroutine */ int zlqt02_(integer *m, integer *n, integer *k, 
00034         doublecomplex *a, doublecomplex *af, doublecomplex *q, doublecomplex *
00035         l, integer *lda, doublecomplex *tau, doublecomplex *work, integer *
00036         lwork, doublereal *rwork, doublereal *result)
00037 {
00038     /* System generated locals */
00039     integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
00040             q_offset, i__1;
00041 
00042     /* Builtin functions */
00043     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00044 
00045     /* Local variables */
00046     doublereal eps;
00047     integer info;
00048     doublereal resid, anorm;
00049     extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
00050             integer *, doublecomplex *, doublecomplex *, integer *, 
00051             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00052             integer *), zherk_(char *, char *, integer *, 
00053             integer *, doublereal *, doublecomplex *, integer *, doublereal *, 
00054              doublecomplex *, integer *);
00055     extern doublereal dlamch_(char *), zlange_(char *, integer *, 
00056             integer *, doublecomplex *, integer *, doublereal *);
00057     extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
00058             doublecomplex *, integer *, doublecomplex *, integer *), 
00059             zlaset_(char *, integer *, integer *, doublecomplex *, 
00060             doublecomplex *, doublecomplex *, integer *);
00061     extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, 
00062             integer *, doublereal *);
00063     extern /* Subroutine */ int zunglq_(integer *, integer *, integer *, 
00064             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00065             integer *, integer *);
00066 
00067 
00068 /*  -- LAPACK test routine (version 3.1) -- */
00069 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00070 /*     November 2006 */
00071 
00072 /*     .. Scalar Arguments .. */
00073 /*     .. */
00074 /*     .. Array Arguments .. */
00075 /*     .. */
00076 
00077 /*  Purpose */
00078 /*  ======= */
00079 
00080 /*  ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with */
00081 /*  orthonornmal rows that is defined as the product of k elementary */
00082 /*  reflectors. */
00083 
00084 /*  Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates */
00085 /*  the orthogonal matrix Q defined by the factorization of the first k */
00086 /*  rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and */
00087 /*  checks that the rows of Q are orthonormal. */
00088 
00089 /*  Arguments */
00090 /*  ========= */
00091 
00092 /*  M       (input) INTEGER */
00093 /*          The number of rows of the matrix Q to be generated.  M >= 0. */
00094 
00095 /*  N       (input) INTEGER */
00096 /*          The number of columns of the matrix Q to be generated. */
00097 /*          N >= M >= 0. */
00098 
00099 /*  K       (input) INTEGER */
00100 /*          The number of elementary reflectors whose product defines the */
00101 /*          matrix Q. M >= K >= 0. */
00102 
00103 /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
00104 /*          The m-by-n matrix A which was factorized by ZLQT01. */
00105 
00106 /*  AF      (input) COMPLEX*16 array, dimension (LDA,N) */
00107 /*          Details of the LQ factorization of A, as returned by ZGELQF. */
00108 /*          See ZGELQF for further details. */
00109 
00110 /*  Q       (workspace) COMPLEX*16 array, dimension (LDA,N) */
00111 
00112 /*  L       (workspace) COMPLEX*16 array, dimension (LDA,M) */
00113 
00114 /*  LDA     (input) INTEGER */
00115 /*          The leading dimension of the arrays A, AF, Q and L. LDA >= N. */
00116 
00117 /*  TAU     (input) COMPLEX*16 array, dimension (M) */
00118 /*          The scalar factors of the elementary reflectors corresponding */
00119 /*          to the LQ factorization in AF. */
00120 
00121 /*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK) */
00122 
00123 /*  LWORK   (input) INTEGER */
00124 /*          The dimension of the array WORK. */
00125 
00126 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M) */
00127 
00128 /*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
00129 /*          The test ratios: */
00130 /*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) */
00131 /*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */
00132 
00133 /*  ===================================================================== */
00134 
00135 /*     .. Parameters .. */
00136 /*     .. */
00137 /*     .. Local Scalars .. */
00138 /*     .. */
00139 /*     .. External Functions .. */
00140 /*     .. */
00141 /*     .. External Subroutines .. */
00142 /*     .. */
00143 /*     .. Intrinsic Functions .. */
00144 /*     .. */
00145 /*     .. Scalars in Common .. */
00146 /*     .. */
00147 /*     .. Common blocks .. */
00148 /*     .. */
00149 /*     .. Executable Statements .. */
00150 
00151     /* Parameter adjustments */
00152     l_dim1 = *lda;
00153     l_offset = 1 + l_dim1;
00154     l -= l_offset;
00155     q_dim1 = *lda;
00156     q_offset = 1 + q_dim1;
00157     q -= q_offset;
00158     af_dim1 = *lda;
00159     af_offset = 1 + af_dim1;
00160     af -= af_offset;
00161     a_dim1 = *lda;
00162     a_offset = 1 + a_dim1;
00163     a -= a_offset;
00164     --tau;
00165     --work;
00166     --rwork;
00167     --result;
00168 
00169     /* Function Body */
00170     eps = dlamch_("Epsilon");
00171 
00172 /*     Copy the first k rows of the factorization to the array Q */
00173 
00174     zlaset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda);
00175     i__1 = *n - 1;
00176     zlacpy_("Upper", k, &i__1, &af[(af_dim1 << 1) + 1], lda, &q[(q_dim1 << 1) 
00177             + 1], lda);
00178 
00179 /*     Generate the first n columns of the matrix Q */
00180 
00181     s_copy(srnamc_1.srnamt, "ZUNGLQ", (ftnlen)32, (ftnlen)6);
00182     zunglq_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00183 
00184 /*     Copy L(1:k,1:m) */
00185 
00186     zlaset_("Full", k, m, &c_b8, &c_b8, &l[l_offset], lda);
00187     zlacpy_("Lower", k, m, &af[af_offset], lda, &l[l_offset], lda);
00188 
00189 /*     Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)' */
00190 
00191     zgemm_("No transpose", "Conjugate transpose", k, m, n, &c_b13, &a[
00192             a_offset], lda, &q[q_offset], lda, &c_b14, &l[l_offset], lda);
00193 
00194 /*     Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) . */
00195 
00196     anorm = zlange_("1", k, n, &a[a_offset], lda, &rwork[1]);
00197     resid = zlange_("1", k, m, &l[l_offset], lda, &rwork[1]);
00198     if (anorm > 0.) {
00199         result[1] = resid / (doublereal) max(1,*n) / anorm / eps;
00200     } else {
00201         result[1] = 0.;
00202     }
00203 
00204 /*     Compute I - Q*Q' */
00205 
00206     zlaset_("Full", m, m, &c_b8, &c_b14, &l[l_offset], lda);
00207     zherk_("Upper", "No transpose", m, n, &c_b22, &q[q_offset], lda, &c_b23, &
00208             l[l_offset], lda);
00209 
00210 /*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */
00211 
00212     resid = zlansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]);
00213 
00214     result[2] = resid / (doublereal) max(1,*n) / eps;
00215 
00216     return 0;
00217 
00218 /*     End of ZLQT02 */
00219 
00220 } /* zlqt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:42