00001 /* zlatrz.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zlatrz_(integer *m, integer *n, integer *l, 00017 doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex * 00018 work) 00019 { 00020 /* System generated locals */ 00021 integer a_dim1, a_offset, i__1, i__2; 00022 doublecomplex z__1; 00023 00024 /* Builtin functions */ 00025 void d_cnjg(doublecomplex *, doublecomplex *); 00026 00027 /* Local variables */ 00028 integer i__; 00029 doublecomplex alpha; 00030 extern /* Subroutine */ int zlarz_(char *, integer *, integer *, integer * 00031 , doublecomplex *, integer *, doublecomplex *, doublecomplex *, 00032 integer *, doublecomplex *), zlacgv_(integer *, 00033 doublecomplex *, integer *), zlarfp_(integer *, doublecomplex *, 00034 doublecomplex *, integer *, doublecomplex *); 00035 00036 00037 /* -- LAPACK routine (version 3.2) -- */ 00038 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00039 /* November 2006 */ 00040 00041 /* .. Scalar Arguments .. */ 00042 /* .. */ 00043 /* .. Array Arguments .. */ 00044 /* .. */ 00045 00046 /* Purpose */ 00047 /* ======= */ 00048 00049 /* ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix */ 00050 /* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means */ 00051 /* of unitary transformations, where Z is an (M+L)-by-(M+L) unitary */ 00052 /* matrix and, R and A1 are M-by-M upper triangular matrices. */ 00053 00054 /* Arguments */ 00055 /* ========= */ 00056 00057 /* M (input) INTEGER */ 00058 /* The number of rows of the matrix A. M >= 0. */ 00059 00060 /* N (input) INTEGER */ 00061 /* The number of columns of the matrix A. N >= 0. */ 00062 00063 /* L (input) INTEGER */ 00064 /* The number of columns of the matrix A containing the */ 00065 /* meaningful part of the Householder vectors. N-M >= L >= 0. */ 00066 00067 /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ 00068 /* On entry, the leading M-by-N upper trapezoidal part of the */ 00069 /* array A must contain the matrix to be factorized. */ 00070 /* On exit, the leading M-by-M upper triangular part of A */ 00071 /* contains the upper triangular matrix R, and elements N-L+1 to */ 00072 /* N of the first M rows of A, with the array TAU, represent the */ 00073 /* unitary matrix Z as a product of M elementary reflectors. */ 00074 00075 /* LDA (input) INTEGER */ 00076 /* The leading dimension of the array A. LDA >= max(1,M). */ 00077 00078 /* TAU (output) COMPLEX*16 array, dimension (M) */ 00079 /* The scalar factors of the elementary reflectors. */ 00080 00081 /* WORK (workspace) COMPLEX*16 array, dimension (M) */ 00082 00083 /* Further Details */ 00084 /* =============== */ 00085 00086 /* Based on contributions by */ 00087 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00088 00089 /* The factorization is obtained by Householder's method. The kth */ 00090 /* transformation matrix, Z( k ), which is used to introduce zeros into */ 00091 /* the ( m - k + 1 )th row of A, is given in the form */ 00092 00093 /* Z( k ) = ( I 0 ), */ 00094 /* ( 0 T( k ) ) */ 00095 00096 /* where */ 00097 00098 /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ 00099 /* ( 0 ) */ 00100 /* ( z( k ) ) */ 00101 00102 /* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */ 00103 /* are chosen to annihilate the elements of the kth row of A2. */ 00104 00105 /* The scalar tau is returned in the kth element of TAU and the vector */ 00106 /* u( k ) in the kth row of A2, such that the elements of z( k ) are */ 00107 /* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */ 00108 /* the upper triangular part of A1. */ 00109 00110 /* Z is given by */ 00111 00112 /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ 00113 00114 /* ===================================================================== */ 00115 00116 /* .. Parameters .. */ 00117 /* .. */ 00118 /* .. Local Scalars .. */ 00119 /* .. */ 00120 /* .. External Subroutines .. */ 00121 /* .. */ 00122 /* .. Intrinsic Functions .. */ 00123 /* .. */ 00124 /* .. Executable Statements .. */ 00125 00126 /* Quick return if possible */ 00127 00128 /* Parameter adjustments */ 00129 a_dim1 = *lda; 00130 a_offset = 1 + a_dim1; 00131 a -= a_offset; 00132 --tau; 00133 --work; 00134 00135 /* Function Body */ 00136 if (*m == 0) { 00137 return 0; 00138 } else if (*m == *n) { 00139 i__1 = *n; 00140 for (i__ = 1; i__ <= i__1; ++i__) { 00141 i__2 = i__; 00142 tau[i__2].r = 0., tau[i__2].i = 0.; 00143 /* L10: */ 00144 } 00145 return 0; 00146 } 00147 00148 for (i__ = *m; i__ >= 1; --i__) { 00149 00150 /* Generate elementary reflector H(i) to annihilate */ 00151 /* [ A(i,i) A(i,n-l+1:n) ] */ 00152 00153 zlacgv_(l, &a[i__ + (*n - *l + 1) * a_dim1], lda); 00154 d_cnjg(&z__1, &a[i__ + i__ * a_dim1]); 00155 alpha.r = z__1.r, alpha.i = z__1.i; 00156 i__1 = *l + 1; 00157 zlarfp_(&i__1, &alpha, &a[i__ + (*n - *l + 1) * a_dim1], lda, &tau[ 00158 i__]); 00159 i__1 = i__; 00160 d_cnjg(&z__1, &tau[i__]); 00161 tau[i__1].r = z__1.r, tau[i__1].i = z__1.i; 00162 00163 /* Apply H(i) to A(1:i-1,i:n) from the right */ 00164 00165 i__1 = i__ - 1; 00166 i__2 = *n - i__ + 1; 00167 d_cnjg(&z__1, &tau[i__]); 00168 zlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 00169 lda, &z__1, &a[i__ * a_dim1 + 1], lda, &work[1]); 00170 i__1 = i__ + i__ * a_dim1; 00171 d_cnjg(&z__1, &alpha); 00172 a[i__1].r = z__1.r, a[i__1].i = z__1.i; 00173 00174 /* L20: */ 00175 } 00176 00177 return 0; 00178 00179 /* End of ZLATRZ */ 00180 00181 } /* zlatrz_ */