zlaset.c
Go to the documentation of this file.
00001 /* zlaset.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zlaset_(char *uplo, integer *m, integer *n, 
00017         doublecomplex *alpha, doublecomplex *beta, doublecomplex *a, integer *
00018         lda)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, i__1, i__2, i__3;
00022 
00023     /* Local variables */
00024     integer i__, j;
00025     extern logical lsame_(char *, char *);
00026 
00027 
00028 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00029 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00030 /*     November 2006 */
00031 
00032 /*     .. Scalar Arguments .. */
00033 /*     .. */
00034 /*     .. Array Arguments .. */
00035 /*     .. */
00036 
00037 /*  Purpose */
00038 /*  ======= */
00039 
00040 /*  ZLASET initializes a 2-D array A to BETA on the diagonal and */
00041 /*  ALPHA on the offdiagonals. */
00042 
00043 /*  Arguments */
00044 /*  ========= */
00045 
00046 /*  UPLO    (input) CHARACTER*1 */
00047 /*          Specifies the part of the matrix A to be set. */
00048 /*          = 'U':      Upper triangular part is set. The lower triangle */
00049 /*                      is unchanged. */
00050 /*          = 'L':      Lower triangular part is set. The upper triangle */
00051 /*                      is unchanged. */
00052 /*          Otherwise:  All of the matrix A is set. */
00053 
00054 /*  M       (input) INTEGER */
00055 /*          On entry, M specifies the number of rows of A. */
00056 
00057 /*  N       (input) INTEGER */
00058 /*          On entry, N specifies the number of columns of A. */
00059 
00060 /*  ALPHA   (input) COMPLEX*16 */
00061 /*          All the offdiagonal array elements are set to ALPHA. */
00062 
00063 /*  BETA    (input) COMPLEX*16 */
00064 /*          All the diagonal array elements are set to BETA. */
00065 
00066 /*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
00067 /*          On entry, the m by n matrix A. */
00068 /*          On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j; */
00069 /*                   A(i,i) = BETA , 1 <= i <= min(m,n) */
00070 
00071 /*  LDA     (input) INTEGER */
00072 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00073 
00074 /*  ===================================================================== */
00075 
00076 /*     .. Local Scalars .. */
00077 /*     .. */
00078 /*     .. External Functions .. */
00079 /*     .. */
00080 /*     .. Intrinsic Functions .. */
00081 /*     .. */
00082 /*     .. Executable Statements .. */
00083 
00084     /* Parameter adjustments */
00085     a_dim1 = *lda;
00086     a_offset = 1 + a_dim1;
00087     a -= a_offset;
00088 
00089     /* Function Body */
00090     if (lsame_(uplo, "U")) {
00091 
00092 /*        Set the diagonal to BETA and the strictly upper triangular */
00093 /*        part of the array to ALPHA. */
00094 
00095         i__1 = *n;
00096         for (j = 2; j <= i__1; ++j) {
00097 /* Computing MIN */
00098             i__3 = j - 1;
00099             i__2 = min(i__3,*m);
00100             for (i__ = 1; i__ <= i__2; ++i__) {
00101                 i__3 = i__ + j * a_dim1;
00102                 a[i__3].r = alpha->r, a[i__3].i = alpha->i;
00103 /* L10: */
00104             }
00105 /* L20: */
00106         }
00107         i__1 = min(*n,*m);
00108         for (i__ = 1; i__ <= i__1; ++i__) {
00109             i__2 = i__ + i__ * a_dim1;
00110             a[i__2].r = beta->r, a[i__2].i = beta->i;
00111 /* L30: */
00112         }
00113 
00114     } else if (lsame_(uplo, "L")) {
00115 
00116 /*        Set the diagonal to BETA and the strictly lower triangular */
00117 /*        part of the array to ALPHA. */
00118 
00119         i__1 = min(*m,*n);
00120         for (j = 1; j <= i__1; ++j) {
00121             i__2 = *m;
00122             for (i__ = j + 1; i__ <= i__2; ++i__) {
00123                 i__3 = i__ + j * a_dim1;
00124                 a[i__3].r = alpha->r, a[i__3].i = alpha->i;
00125 /* L40: */
00126             }
00127 /* L50: */
00128         }
00129         i__1 = min(*n,*m);
00130         for (i__ = 1; i__ <= i__1; ++i__) {
00131             i__2 = i__ + i__ * a_dim1;
00132             a[i__2].r = beta->r, a[i__2].i = beta->i;
00133 /* L60: */
00134         }
00135 
00136     } else {
00137 
00138 /*        Set the array to BETA on the diagonal and ALPHA on the */
00139 /*        offdiagonal. */
00140 
00141         i__1 = *n;
00142         for (j = 1; j <= i__1; ++j) {
00143             i__2 = *m;
00144             for (i__ = 1; i__ <= i__2; ++i__) {
00145                 i__3 = i__ + j * a_dim1;
00146                 a[i__3].r = alpha->r, a[i__3].i = alpha->i;
00147 /* L70: */
00148             }
00149 /* L80: */
00150         }
00151         i__1 = min(*m,*n);
00152         for (i__ = 1; i__ <= i__1; ++i__) {
00153             i__2 = i__ + i__ * a_dim1;
00154             a[i__2].r = beta->r, a[i__2].i = beta->i;
00155 /* L90: */
00156         }
00157     }
00158 
00159     return 0;
00160 
00161 /*     End of ZLASET */
00162 
00163 } /* zlaset_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:41