00001 /* zlarz.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublecomplex c_b1 = {1.,0.}; 00019 static integer c__1 = 1; 00020 00021 /* Subroutine */ int zlarz_(char *side, integer *m, integer *n, integer *l, 00022 doublecomplex *v, integer *incv, doublecomplex *tau, doublecomplex * 00023 c__, integer *ldc, doublecomplex *work) 00024 { 00025 /* System generated locals */ 00026 integer c_dim1, c_offset; 00027 doublecomplex z__1; 00028 00029 /* Local variables */ 00030 extern logical lsame_(char *, char *); 00031 extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *, 00032 doublecomplex *, integer *, doublecomplex *, integer *, 00033 doublecomplex *, integer *), zgemv_(char *, integer *, integer *, 00034 doublecomplex *, doublecomplex *, integer *, doublecomplex *, 00035 integer *, doublecomplex *, doublecomplex *, integer *), 00036 zgeru_(integer *, integer *, doublecomplex *, doublecomplex *, 00037 integer *, doublecomplex *, integer *, doublecomplex *, integer *) 00038 , zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, 00039 integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, 00040 integer *, doublecomplex *, integer *), zlacgv_(integer *, 00041 doublecomplex *, integer *); 00042 00043 00044 /* -- LAPACK routine (version 3.2) -- */ 00045 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00046 /* November 2006 */ 00047 00048 /* .. Scalar Arguments .. */ 00049 /* .. */ 00050 /* .. Array Arguments .. */ 00051 /* .. */ 00052 00053 /* Purpose */ 00054 /* ======= */ 00055 00056 /* ZLARZ applies a complex elementary reflector H to a complex */ 00057 /* M-by-N matrix C, from either the left or the right. H is represented */ 00058 /* in the form */ 00059 00060 /* H = I - tau * v * v' */ 00061 00062 /* where tau is a complex scalar and v is a complex vector. */ 00063 00064 /* If tau = 0, then H is taken to be the unit matrix. */ 00065 00066 /* To apply H' (the conjugate transpose of H), supply conjg(tau) instead */ 00067 /* tau. */ 00068 00069 /* H is a product of k elementary reflectors as returned by ZTZRZF. */ 00070 00071 /* Arguments */ 00072 /* ========= */ 00073 00074 /* SIDE (input) CHARACTER*1 */ 00075 /* = 'L': form H * C */ 00076 /* = 'R': form C * H */ 00077 00078 /* M (input) INTEGER */ 00079 /* The number of rows of the matrix C. */ 00080 00081 /* N (input) INTEGER */ 00082 /* The number of columns of the matrix C. */ 00083 00084 /* L (input) INTEGER */ 00085 /* The number of entries of the vector V containing */ 00086 /* the meaningful part of the Householder vectors. */ 00087 /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */ 00088 00089 /* V (input) COMPLEX*16 array, dimension (1+(L-1)*abs(INCV)) */ 00090 /* The vector v in the representation of H as returned by */ 00091 /* ZTZRZF. V is not used if TAU = 0. */ 00092 00093 /* INCV (input) INTEGER */ 00094 /* The increment between elements of v. INCV <> 0. */ 00095 00096 /* TAU (input) COMPLEX*16 */ 00097 /* The value tau in the representation of H. */ 00098 00099 /* C (input/output) COMPLEX*16 array, dimension (LDC,N) */ 00100 /* On entry, the M-by-N matrix C. */ 00101 /* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */ 00102 /* or C * H if SIDE = 'R'. */ 00103 00104 /* LDC (input) INTEGER */ 00105 /* The leading dimension of the array C. LDC >= max(1,M). */ 00106 00107 /* WORK (workspace) COMPLEX*16 array, dimension */ 00108 /* (N) if SIDE = 'L' */ 00109 /* or (M) if SIDE = 'R' */ 00110 00111 /* Further Details */ 00112 /* =============== */ 00113 00114 /* Based on contributions by */ 00115 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00116 00117 /* ===================================================================== */ 00118 00119 /* .. Parameters .. */ 00120 /* .. */ 00121 /* .. External Subroutines .. */ 00122 /* .. */ 00123 /* .. External Functions .. */ 00124 /* .. */ 00125 /* .. Executable Statements .. */ 00126 00127 /* Parameter adjustments */ 00128 --v; 00129 c_dim1 = *ldc; 00130 c_offset = 1 + c_dim1; 00131 c__ -= c_offset; 00132 --work; 00133 00134 /* Function Body */ 00135 if (lsame_(side, "L")) { 00136 00137 /* Form H * C */ 00138 00139 if (tau->r != 0. || tau->i != 0.) { 00140 00141 /* w( 1:n ) = conjg( C( 1, 1:n ) ) */ 00142 00143 zcopy_(n, &c__[c_offset], ldc, &work[1], &c__1); 00144 zlacgv_(n, &work[1], &c__1); 00145 00146 /* w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )' * v( 1:l ) ) */ 00147 00148 zgemv_("Conjugate transpose", l, n, &c_b1, &c__[*m - *l + 1 + 00149 c_dim1], ldc, &v[1], incv, &c_b1, &work[1], &c__1); 00150 zlacgv_(n, &work[1], &c__1); 00151 00152 /* C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) */ 00153 00154 z__1.r = -tau->r, z__1.i = -tau->i; 00155 zaxpy_(n, &z__1, &work[1], &c__1, &c__[c_offset], ldc); 00156 00157 /* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */ 00158 /* tau * v( 1:l ) * conjg( w( 1:n )' ) */ 00159 00160 z__1.r = -tau->r, z__1.i = -tau->i; 00161 zgeru_(l, n, &z__1, &v[1], incv, &work[1], &c__1, &c__[*m - *l + 00162 1 + c_dim1], ldc); 00163 } 00164 00165 } else { 00166 00167 /* Form C * H */ 00168 00169 if (tau->r != 0. || tau->i != 0.) { 00170 00171 /* w( 1:m ) = C( 1:m, 1 ) */ 00172 00173 zcopy_(m, &c__[c_offset], &c__1, &work[1], &c__1); 00174 00175 /* w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) */ 00176 00177 zgemv_("No transpose", m, l, &c_b1, &c__[(*n - *l + 1) * c_dim1 + 00178 1], ldc, &v[1], incv, &c_b1, &work[1], &c__1); 00179 00180 /* C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) */ 00181 00182 z__1.r = -tau->r, z__1.i = -tau->i; 00183 zaxpy_(m, &z__1, &work[1], &c__1, &c__[c_offset], &c__1); 00184 00185 /* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */ 00186 /* tau * w( 1:m ) * v( 1:l )' */ 00187 00188 z__1.r = -tau->r, z__1.i = -tau->i; 00189 zgerc_(m, l, &z__1, &work[1], &c__1, &v[1], incv, &c__[(*n - *l + 00190 1) * c_dim1 + 1], ldc); 00191 00192 } 00193 00194 } 00195 00196 return 0; 00197 00198 /* End of ZLARZ */ 00199 00200 } /* zlarz_ */