00001 /* zlartv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zlartv_(integer *n, doublecomplex *x, integer *incx, 00017 doublecomplex *y, integer *incy, doublereal *c__, doublecomplex *s, 00018 integer *incc) 00019 { 00020 /* System generated locals */ 00021 integer i__1, i__2, i__3, i__4; 00022 doublecomplex z__1, z__2, z__3, z__4; 00023 00024 /* Builtin functions */ 00025 void d_cnjg(doublecomplex *, doublecomplex *); 00026 00027 /* Local variables */ 00028 integer i__, ic, ix, iy; 00029 doublecomplex xi, yi; 00030 00031 00032 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00033 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00034 /* November 2006 */ 00035 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* ZLARTV applies a vector of complex plane rotations with real cosines */ 00045 /* to elements of the complex vectors x and y. For i = 1,2,...,n */ 00046 00047 /* ( x(i) ) := ( c(i) s(i) ) ( x(i) ) */ 00048 /* ( y(i) ) ( -conjg(s(i)) c(i) ) ( y(i) ) */ 00049 00050 /* Arguments */ 00051 /* ========= */ 00052 00053 /* N (input) INTEGER */ 00054 /* The number of plane rotations to be applied. */ 00055 00056 /* X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */ 00057 /* The vector x. */ 00058 00059 /* INCX (input) INTEGER */ 00060 /* The increment between elements of X. INCX > 0. */ 00061 00062 /* Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY) */ 00063 /* The vector y. */ 00064 00065 /* INCY (input) INTEGER */ 00066 /* The increment between elements of Y. INCY > 0. */ 00067 00068 /* C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC) */ 00069 /* The cosines of the plane rotations. */ 00070 00071 /* S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC) */ 00072 /* The sines of the plane rotations. */ 00073 00074 /* INCC (input) INTEGER */ 00075 /* The increment between elements of C and S. INCC > 0. */ 00076 00077 /* ===================================================================== */ 00078 00079 /* .. Local Scalars .. */ 00080 /* .. */ 00081 /* .. Intrinsic Functions .. */ 00082 /* .. */ 00083 /* .. Executable Statements .. */ 00084 00085 /* Parameter adjustments */ 00086 --s; 00087 --c__; 00088 --y; 00089 --x; 00090 00091 /* Function Body */ 00092 ix = 1; 00093 iy = 1; 00094 ic = 1; 00095 i__1 = *n; 00096 for (i__ = 1; i__ <= i__1; ++i__) { 00097 i__2 = ix; 00098 xi.r = x[i__2].r, xi.i = x[i__2].i; 00099 i__2 = iy; 00100 yi.r = y[i__2].r, yi.i = y[i__2].i; 00101 i__2 = ix; 00102 i__3 = ic; 00103 z__2.r = c__[i__3] * xi.r, z__2.i = c__[i__3] * xi.i; 00104 i__4 = ic; 00105 z__3.r = s[i__4].r * yi.r - s[i__4].i * yi.i, z__3.i = s[i__4].r * 00106 yi.i + s[i__4].i * yi.r; 00107 z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; 00108 x[i__2].r = z__1.r, x[i__2].i = z__1.i; 00109 i__2 = iy; 00110 i__3 = ic; 00111 z__2.r = c__[i__3] * yi.r, z__2.i = c__[i__3] * yi.i; 00112 d_cnjg(&z__4, &s[ic]); 00113 z__3.r = z__4.r * xi.r - z__4.i * xi.i, z__3.i = z__4.r * xi.i + 00114 z__4.i * xi.r; 00115 z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; 00116 y[i__2].r = z__1.r, y[i__2].i = z__1.i; 00117 ix += *incx; 00118 iy += *incy; 00119 ic += *incc; 00120 /* L10: */ 00121 } 00122 return 0; 00123 00124 /* End of ZLARTV */ 00125 00126 } /* zlartv_ */