zhbgvd.c
Go to the documentation of this file.
00001 /* zhbgvd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublecomplex c_b1 = {1.,0.};
00019 static doublecomplex c_b2 = {0.,0.};
00020 
00021 /* Subroutine */ int zhbgvd_(char *jobz, char *uplo, integer *n, integer *ka, 
00022         integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb, 
00023         integer *ldbb, doublereal *w, doublecomplex *z__, integer *ldz, 
00024         doublecomplex *work, integer *lwork, doublereal *rwork, integer *
00025         lrwork, integer *iwork, integer *liwork, integer *info)
00026 {
00027     /* System generated locals */
00028     integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
00029 
00030     /* Local variables */
00031     integer inde;
00032     char vect[1];
00033     integer llwk2;
00034     extern logical lsame_(char *, char *);
00035     integer iinfo;
00036     extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
00037             integer *, doublecomplex *, doublecomplex *, integer *, 
00038             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00039             integer *);
00040     integer lwmin;
00041     logical upper;
00042     integer llrwk;
00043     logical wantz;
00044     integer indwk2;
00045     extern /* Subroutine */ int xerbla_(char *, integer *), dsterf_(
00046             integer *, doublereal *, doublereal *, integer *), zstedc_(char *, 
00047              integer *, doublereal *, doublereal *, doublecomplex *, integer *
00048 , doublecomplex *, integer *, doublereal *, integer *, integer *, 
00049             integer *, integer *), zhbtrd_(char *, char *, integer *, 
00050             integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
00051              doublecomplex *, integer *, doublecomplex *, integer *);
00052     integer indwrk, liwmin;
00053     extern /* Subroutine */ int zhbgst_(char *, char *, integer *, integer *, 
00054             integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
00055              doublecomplex *, integer *, doublecomplex *, doublereal *, 
00056             integer *), zlacpy_(char *, integer *, integer *, 
00057             doublecomplex *, integer *, doublecomplex *, integer *);
00058     integer lrwmin;
00059     extern /* Subroutine */ int zpbstf_(char *, integer *, integer *, 
00060             doublecomplex *, integer *, integer *);
00061     logical lquery;
00062 
00063 
00064 /*  -- LAPACK driver routine (version 3.2) -- */
00065 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00066 /*     November 2006 */
00067 
00068 /*     .. Scalar Arguments .. */
00069 /*     .. */
00070 /*     .. Array Arguments .. */
00071 /*     .. */
00072 
00073 /*  Purpose */
00074 /*  ======= */
00075 
00076 /*  ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors */
00077 /*  of a complex generalized Hermitian-definite banded eigenproblem, of */
00078 /*  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
00079 /*  and banded, and B is also positive definite.  If eigenvectors are */
00080 /*  desired, it uses a divide and conquer algorithm. */
00081 
00082 /*  The divide and conquer algorithm makes very mild assumptions about */
00083 /*  floating point arithmetic. It will work on machines with a guard */
00084 /*  digit in add/subtract, or on those binary machines without guard */
00085 /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
00086 /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
00087 /*  without guard digits, but we know of none. */
00088 
00089 /*  Arguments */
00090 /*  ========= */
00091 
00092 /*  JOBZ    (input) CHARACTER*1 */
00093 /*          = 'N':  Compute eigenvalues only; */
00094 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00095 
00096 /*  UPLO    (input) CHARACTER*1 */
00097 /*          = 'U':  Upper triangles of A and B are stored; */
00098 /*          = 'L':  Lower triangles of A and B are stored. */
00099 
00100 /*  N       (input) INTEGER */
00101 /*          The order of the matrices A and B.  N >= 0. */
00102 
00103 /*  KA      (input) INTEGER */
00104 /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
00105 /*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
00106 
00107 /*  KB      (input) INTEGER */
00108 /*          The number of superdiagonals of the matrix B if UPLO = 'U', */
00109 /*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
00110 
00111 /*  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N) */
00112 /*          On entry, the upper or lower triangle of the Hermitian band */
00113 /*          matrix A, stored in the first ka+1 rows of the array.  The */
00114 /*          j-th column of A is stored in the j-th column of the array AB */
00115 /*          as follows: */
00116 /*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
00117 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */
00118 
00119 /*          On exit, the contents of AB are destroyed. */
00120 
00121 /*  LDAB    (input) INTEGER */
00122 /*          The leading dimension of the array AB.  LDAB >= KA+1. */
00123 
00124 /*  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N) */
00125 /*          On entry, the upper or lower triangle of the Hermitian band */
00126 /*          matrix B, stored in the first kb+1 rows of the array.  The */
00127 /*          j-th column of B is stored in the j-th column of the array BB */
00128 /*          as follows: */
00129 /*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
00130 /*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */
00131 
00132 /*          On exit, the factor S from the split Cholesky factorization */
00133 /*          B = S**H*S, as returned by ZPBSTF. */
00134 
00135 /*  LDBB    (input) INTEGER */
00136 /*          The leading dimension of the array BB.  LDBB >= KB+1. */
00137 
00138 /*  W       (output) DOUBLE PRECISION array, dimension (N) */
00139 /*          If INFO = 0, the eigenvalues in ascending order. */
00140 
00141 /*  Z       (output) COMPLEX*16 array, dimension (LDZ, N) */
00142 /*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
00143 /*          eigenvectors, with the i-th column of Z holding the */
00144 /*          eigenvector associated with W(i). The eigenvectors are */
00145 /*          normalized so that Z**H*B*Z = I. */
00146 /*          If JOBZ = 'N', then Z is not referenced. */
00147 
00148 /*  LDZ     (input) INTEGER */
00149 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00150 /*          JOBZ = 'V', LDZ >= N. */
00151 
00152 /*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
00153 /*          On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
00154 
00155 /*  LWORK   (input) INTEGER */
00156 /*          The dimension of the array WORK. */
00157 /*          If N <= 1,               LWORK >= 1. */
00158 /*          If JOBZ = 'N' and N > 1, LWORK >= N. */
00159 /*          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. */
00160 
00161 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00162 /*          only calculates the optimal sizes of the WORK, RWORK and */
00163 /*          IWORK arrays, returns these values as the first entries of */
00164 /*          the WORK, RWORK and IWORK arrays, and no error message */
00165 /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
00166 
00167 /*  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
00168 /*          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. */
00169 
00170 /*  LRWORK  (input) INTEGER */
00171 /*          The dimension of array RWORK. */
00172 /*          If N <= 1,               LRWORK >= 1. */
00173 /*          If JOBZ = 'N' and N > 1, LRWORK >= N. */
00174 /*          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */
00175 
00176 /*          If LRWORK = -1, then a workspace query is assumed; the */
00177 /*          routine only calculates the optimal sizes of the WORK, RWORK */
00178 /*          and IWORK arrays, returns these values as the first entries */
00179 /*          of the WORK, RWORK and IWORK arrays, and no error message */
00180 /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
00181 
00182 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00183 /*          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. */
00184 
00185 /*  LIWORK  (input) INTEGER */
00186 /*          The dimension of array IWORK. */
00187 /*          If JOBZ = 'N' or N <= 1, LIWORK >= 1. */
00188 /*          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
00189 
00190 /*          If LIWORK = -1, then a workspace query is assumed; the */
00191 /*          routine only calculates the optimal sizes of the WORK, RWORK */
00192 /*          and IWORK arrays, returns these values as the first entries */
00193 /*          of the WORK, RWORK and IWORK arrays, and no error message */
00194 /*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
00195 
00196 /*  INFO    (output) INTEGER */
00197 /*          = 0:  successful exit */
00198 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00199 /*          > 0:  if INFO = i, and i is: */
00200 /*             <= N:  the algorithm failed to converge: */
00201 /*                    i off-diagonal elements of an intermediate */
00202 /*                    tridiagonal form did not converge to zero; */
00203 /*             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF */
00204 /*                    returned INFO = i: B is not positive definite. */
00205 /*                    The factorization of B could not be completed and */
00206 /*                    no eigenvalues or eigenvectors were computed. */
00207 
00208 /*  Further Details */
00209 /*  =============== */
00210 
00211 /*  Based on contributions by */
00212 /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
00213 
00214 /*  ===================================================================== */
00215 
00216 /*     .. Parameters .. */
00217 /*     .. */
00218 /*     .. Local Scalars .. */
00219 /*     .. */
00220 /*     .. External Functions .. */
00221 /*     .. */
00222 /*     .. External Subroutines .. */
00223 /*     .. */
00224 /*     .. Executable Statements .. */
00225 
00226 /*     Test the input parameters. */
00227 
00228     /* Parameter adjustments */
00229     ab_dim1 = *ldab;
00230     ab_offset = 1 + ab_dim1;
00231     ab -= ab_offset;
00232     bb_dim1 = *ldbb;
00233     bb_offset = 1 + bb_dim1;
00234     bb -= bb_offset;
00235     --w;
00236     z_dim1 = *ldz;
00237     z_offset = 1 + z_dim1;
00238     z__ -= z_offset;
00239     --work;
00240     --rwork;
00241     --iwork;
00242 
00243     /* Function Body */
00244     wantz = lsame_(jobz, "V");
00245     upper = lsame_(uplo, "U");
00246     lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
00247 
00248     *info = 0;
00249     if (*n <= 1) {
00250         lwmin = 1;
00251         lrwmin = 1;
00252         liwmin = 1;
00253     } else if (wantz) {
00254 /* Computing 2nd power */
00255         i__1 = *n;
00256         lwmin = i__1 * i__1 << 1;
00257 /* Computing 2nd power */
00258         i__1 = *n;
00259         lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
00260         liwmin = *n * 5 + 3;
00261     } else {
00262         lwmin = *n;
00263         lrwmin = *n;
00264         liwmin = 1;
00265     }
00266     if (! (wantz || lsame_(jobz, "N"))) {
00267         *info = -1;
00268     } else if (! (upper || lsame_(uplo, "L"))) {
00269         *info = -2;
00270     } else if (*n < 0) {
00271         *info = -3;
00272     } else if (*ka < 0) {
00273         *info = -4;
00274     } else if (*kb < 0 || *kb > *ka) {
00275         *info = -5;
00276     } else if (*ldab < *ka + 1) {
00277         *info = -7;
00278     } else if (*ldbb < *kb + 1) {
00279         *info = -9;
00280     } else if (*ldz < 1 || wantz && *ldz < *n) {
00281         *info = -12;
00282     }
00283 
00284     if (*info == 0) {
00285         work[1].r = (doublereal) lwmin, work[1].i = 0.;
00286         rwork[1] = (doublereal) lrwmin;
00287         iwork[1] = liwmin;
00288 
00289         if (*lwork < lwmin && ! lquery) {
00290             *info = -14;
00291         } else if (*lrwork < lrwmin && ! lquery) {
00292             *info = -16;
00293         } else if (*liwork < liwmin && ! lquery) {
00294             *info = -18;
00295         }
00296     }
00297 
00298     if (*info != 0) {
00299         i__1 = -(*info);
00300         xerbla_("ZHBGVD", &i__1);
00301         return 0;
00302     } else if (lquery) {
00303         return 0;
00304     }
00305 
00306 /*     Quick return if possible */
00307 
00308     if (*n == 0) {
00309         return 0;
00310     }
00311 
00312 /*     Form a split Cholesky factorization of B. */
00313 
00314     zpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
00315     if (*info != 0) {
00316         *info = *n + *info;
00317         return 0;
00318     }
00319 
00320 /*     Transform problem to standard eigenvalue problem. */
00321 
00322     inde = 1;
00323     indwrk = inde + *n;
00324     indwk2 = *n * *n + 1;
00325     llwk2 = *lwork - indwk2 + 2;
00326     llrwk = *lrwork - indwrk + 2;
00327     zhbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
00328              &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo);
00329 
00330 /*     Reduce Hermitian band matrix to tridiagonal form. */
00331 
00332     if (wantz) {
00333         *(unsigned char *)vect = 'U';
00334     } else {
00335         *(unsigned char *)vect = 'N';
00336     }
00337     zhbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
00338             z__[z_offset], ldz, &work[1], &iinfo);
00339 
00340 /*     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC. */
00341 
00342     if (! wantz) {
00343         dsterf_(n, &w[1], &rwork[inde], info);
00344     } else {
00345         zstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], &
00346                 llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info);
00347         zgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, &
00348                 c_b2, &work[indwk2], n);
00349         zlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
00350     }
00351 
00352     work[1].r = (doublereal) lwmin, work[1].i = 0.;
00353     rwork[1] = (doublereal) lrwmin;
00354     iwork[1] = liwmin;
00355     return 0;
00356 
00357 /*     End of ZHBGVD */
00358 
00359 } /* zhbgvd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:36