00001 /* zgtt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b6 = -1.; 00019 static doublereal c_b7 = 1.; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int zgtt02_(char *trans, integer *n, integer *nrhs, 00023 doublecomplex *dl, doublecomplex *d__, doublecomplex *du, 00024 doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, 00025 doublereal *rwork, doublereal *resid) 00026 { 00027 /* System generated locals */ 00028 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00029 doublereal d__1, d__2; 00030 00031 /* Local variables */ 00032 integer j; 00033 doublereal eps; 00034 extern logical lsame_(char *, char *); 00035 doublereal anorm, bnorm, xnorm; 00036 extern doublereal dlamch_(char *); 00037 extern /* Subroutine */ int zlagtm_(char *, integer *, integer *, 00038 doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, 00039 doublecomplex *, integer *, doublereal *, doublecomplex *, 00040 integer *); 00041 extern doublereal zlangt_(char *, integer *, doublecomplex *, 00042 doublecomplex *, doublecomplex *), dzasum_(integer *, 00043 doublecomplex *, integer *); 00044 00045 00046 /* -- LAPACK test routine (version 3.1) -- */ 00047 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00048 /* November 2006 */ 00049 00050 /* .. Scalar Arguments .. */ 00051 /* .. */ 00052 /* .. Array Arguments .. */ 00053 /* .. */ 00054 00055 /* Purpose */ 00056 /* ======= */ 00057 00058 /* ZGTT02 computes the residual for the solution to a tridiagonal */ 00059 /* system of equations: */ 00060 /* RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS), */ 00061 /* where EPS is the machine epsilon. */ 00062 00063 /* Arguments */ 00064 /* ========= */ 00065 00066 /* TRANS (input) CHARACTER */ 00067 /* Specifies the form of the residual. */ 00068 /* = 'N': B - A * X (No transpose) */ 00069 /* = 'T': B - A**T * X (Transpose) */ 00070 /* = 'C': B - A**H * X (Conjugate transpose) */ 00071 00072 /* N (input) INTEGTER */ 00073 /* The order of the matrix A. N >= 0. */ 00074 00075 /* NRHS (input) INTEGER */ 00076 /* The number of right hand sides, i.e., the number of columns */ 00077 /* of the matrices B and X. NRHS >= 0. */ 00078 00079 /* DL (input) COMPLEX*16 array, dimension (N-1) */ 00080 /* The (n-1) sub-diagonal elements of A. */ 00081 00082 /* D (input) COMPLEX*16 array, dimension (N) */ 00083 /* The diagonal elements of A. */ 00084 00085 /* DU (input) COMPLEX*16 array, dimension (N-1) */ 00086 /* The (n-1) super-diagonal elements of A. */ 00087 00088 /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ 00089 /* The computed solution vectors X. */ 00090 00091 /* LDX (input) INTEGER */ 00092 /* The leading dimension of the array X. LDX >= max(1,N). */ 00093 00094 /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ 00095 /* On entry, the right hand side vectors for the system of */ 00096 /* linear equations. */ 00097 /* On exit, B is overwritten with the difference B - op(A)*X. */ 00098 00099 /* LDB (input) INTEGER */ 00100 /* The leading dimension of the array B. LDB >= max(1,N). */ 00101 00102 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00103 00104 /* RESID (output) DOUBLE PRECISION */ 00105 /* norm(B - op(A)*X) / (norm(A) * norm(X) * EPS) */ 00106 00107 /* ===================================================================== */ 00108 00109 /* .. Parameters .. */ 00110 /* .. */ 00111 /* .. Local Scalars .. */ 00112 /* .. */ 00113 /* .. External Functions .. */ 00114 /* .. */ 00115 /* .. External Subroutines .. */ 00116 /* .. */ 00117 /* .. Intrinsic Functions .. */ 00118 /* .. */ 00119 /* .. Executable Statements .. */ 00120 00121 /* Quick exit if N = 0 or NRHS = 0 */ 00122 00123 /* Parameter adjustments */ 00124 --dl; 00125 --d__; 00126 --du; 00127 x_dim1 = *ldx; 00128 x_offset = 1 + x_dim1; 00129 x -= x_offset; 00130 b_dim1 = *ldb; 00131 b_offset = 1 + b_dim1; 00132 b -= b_offset; 00133 --rwork; 00134 00135 /* Function Body */ 00136 *resid = 0.; 00137 if (*n <= 0 || *nrhs == 0) { 00138 return 0; 00139 } 00140 00141 /* Compute the maximum over the number of right hand sides of */ 00142 /* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ). */ 00143 00144 if (lsame_(trans, "N")) { 00145 anorm = zlangt_("1", n, &dl[1], &d__[1], &du[1]); 00146 } else { 00147 anorm = zlangt_("I", n, &dl[1], &d__[1], &du[1]); 00148 } 00149 00150 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00151 00152 eps = dlamch_("Epsilon"); 00153 if (anorm <= 0.) { 00154 *resid = 1. / eps; 00155 return 0; 00156 } 00157 00158 /* Compute B - op(A)*X. */ 00159 00160 zlagtm_(trans, n, nrhs, &c_b6, &dl[1], &d__[1], &du[1], &x[x_offset], ldx, 00161 &c_b7, &b[b_offset], ldb); 00162 00163 i__1 = *nrhs; 00164 for (j = 1; j <= i__1; ++j) { 00165 bnorm = dzasum_(n, &b[j * b_dim1 + 1], &c__1); 00166 xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); 00167 if (xnorm <= 0.) { 00168 *resid = 1. / eps; 00169 } else { 00170 /* Computing MAX */ 00171 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00172 *resid = max(d__1,d__2); 00173 } 00174 /* L10: */ 00175 } 00176 00177 return 0; 00178 00179 /* End of ZGTT02 */ 00180 00181 } /* zgtt02_ */