00001 /* zgesv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zgesv_(integer *n, integer *nrhs, doublecomplex *a, 00017 integer *lda, integer *ipiv, doublecomplex *b, integer *ldb, integer * 00018 info) 00019 { 00020 /* System generated locals */ 00021 integer a_dim1, a_offset, b_dim1, b_offset, i__1; 00022 00023 /* Local variables */ 00024 extern /* Subroutine */ int xerbla_(char *, integer *), zgetrf_( 00025 integer *, integer *, doublecomplex *, integer *, integer *, 00026 integer *), zgetrs_(char *, integer *, integer *, doublecomplex *, 00027 integer *, integer *, doublecomplex *, integer *, integer *); 00028 00029 00030 /* -- LAPACK driver routine (version 3.2) -- */ 00031 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00032 /* November 2006 */ 00033 00034 /* .. Scalar Arguments .. */ 00035 /* .. */ 00036 /* .. Array Arguments .. */ 00037 /* .. */ 00038 00039 /* Purpose */ 00040 /* ======= */ 00041 00042 /* ZGESV computes the solution to a complex system of linear equations */ 00043 /* A * X = B, */ 00044 /* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */ 00045 00046 /* The LU decomposition with partial pivoting and row interchanges is */ 00047 /* used to factor A as */ 00048 /* A = P * L * U, */ 00049 /* where P is a permutation matrix, L is unit lower triangular, and U is */ 00050 /* upper triangular. The factored form of A is then used to solve the */ 00051 /* system of equations A * X = B. */ 00052 00053 /* Arguments */ 00054 /* ========= */ 00055 00056 /* N (input) INTEGER */ 00057 /* The number of linear equations, i.e., the order of the */ 00058 /* matrix A. N >= 0. */ 00059 00060 /* NRHS (input) INTEGER */ 00061 /* The number of right hand sides, i.e., the number of columns */ 00062 /* of the matrix B. NRHS >= 0. */ 00063 00064 /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ 00065 /* On entry, the N-by-N coefficient matrix A. */ 00066 /* On exit, the factors L and U from the factorization */ 00067 /* A = P*L*U; the unit diagonal elements of L are not stored. */ 00068 00069 /* LDA (input) INTEGER */ 00070 /* The leading dimension of the array A. LDA >= max(1,N). */ 00071 00072 /* IPIV (output) INTEGER array, dimension (N) */ 00073 /* The pivot indices that define the permutation matrix P; */ 00074 /* row i of the matrix was interchanged with row IPIV(i). */ 00075 00076 /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ 00077 /* On entry, the N-by-NRHS matrix of right hand side matrix B. */ 00078 /* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ 00079 00080 /* LDB (input) INTEGER */ 00081 /* The leading dimension of the array B. LDB >= max(1,N). */ 00082 00083 /* INFO (output) INTEGER */ 00084 /* = 0: successful exit */ 00085 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00086 /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ 00087 /* has been completed, but the factor U is exactly */ 00088 /* singular, so the solution could not be computed. */ 00089 00090 /* ===================================================================== */ 00091 00092 /* .. External Subroutines .. */ 00093 /* .. */ 00094 /* .. Intrinsic Functions .. */ 00095 /* .. */ 00096 /* .. Executable Statements .. */ 00097 00098 /* Test the input parameters. */ 00099 00100 /* Parameter adjustments */ 00101 a_dim1 = *lda; 00102 a_offset = 1 + a_dim1; 00103 a -= a_offset; 00104 --ipiv; 00105 b_dim1 = *ldb; 00106 b_offset = 1 + b_dim1; 00107 b -= b_offset; 00108 00109 /* Function Body */ 00110 *info = 0; 00111 if (*n < 0) { 00112 *info = -1; 00113 } else if (*nrhs < 0) { 00114 *info = -2; 00115 } else if (*lda < max(1,*n)) { 00116 *info = -4; 00117 } else if (*ldb < max(1,*n)) { 00118 *info = -7; 00119 } 00120 if (*info != 0) { 00121 i__1 = -(*info); 00122 xerbla_("ZGESV ", &i__1); 00123 return 0; 00124 } 00125 00126 /* Compute the LU factorization of A. */ 00127 00128 zgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); 00129 if (*info == 0) { 00130 00131 /* Solve the system A*X = B, overwriting B with X. */ 00132 00133 zgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ 00134 b_offset], ldb, info); 00135 } 00136 return 0; 00137 00138 /* End of ZGESV */ 00139 00140 } /* zgesv_ */