00001 /* zgeql2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int zgeql2_(integer *m, integer *n, doublecomplex *a, 00021 integer *lda, doublecomplex *tau, doublecomplex *work, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer a_dim1, a_offset, i__1, i__2; 00025 doublecomplex z__1; 00026 00027 /* Builtin functions */ 00028 void d_cnjg(doublecomplex *, doublecomplex *); 00029 00030 /* Local variables */ 00031 integer i__, k; 00032 doublecomplex alpha; 00033 extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 00034 doublecomplex *, integer *, doublecomplex *, doublecomplex *, 00035 integer *, doublecomplex *), xerbla_(char *, integer *), zlarfp_(integer *, doublecomplex *, doublecomplex *, 00036 integer *, doublecomplex *); 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* ZGEQL2 computes a QL factorization of a complex m by n matrix A: */ 00052 /* A = Q * L. */ 00053 00054 /* Arguments */ 00055 /* ========= */ 00056 00057 /* M (input) INTEGER */ 00058 /* The number of rows of the matrix A. M >= 0. */ 00059 00060 /* N (input) INTEGER */ 00061 /* The number of columns of the matrix A. N >= 0. */ 00062 00063 /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ 00064 /* On entry, the m by n matrix A. */ 00065 /* On exit, if m >= n, the lower triangle of the subarray */ 00066 /* A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; */ 00067 /* if m <= n, the elements on and below the (n-m)-th */ 00068 /* superdiagonal contain the m by n lower trapezoidal matrix L; */ 00069 /* the remaining elements, with the array TAU, represent the */ 00070 /* unitary matrix Q as a product of elementary reflectors */ 00071 /* (see Further Details). */ 00072 00073 /* LDA (input) INTEGER */ 00074 /* The leading dimension of the array A. LDA >= max(1,M). */ 00075 00076 /* TAU (output) COMPLEX*16 array, dimension (min(M,N)) */ 00077 /* The scalar factors of the elementary reflectors (see Further */ 00078 /* Details). */ 00079 00080 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00081 00082 /* INFO (output) INTEGER */ 00083 /* = 0: successful exit */ 00084 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00085 00086 /* Further Details */ 00087 /* =============== */ 00088 00089 /* The matrix Q is represented as a product of elementary reflectors */ 00090 00091 /* Q = H(k) . . . H(2) H(1), where k = min(m,n). */ 00092 00093 /* Each H(i) has the form */ 00094 00095 /* H(i) = I - tau * v * v' */ 00096 00097 /* where tau is a complex scalar, and v is a complex vector with */ 00098 /* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */ 00099 /* A(1:m-k+i-1,n-k+i), and tau in TAU(i). */ 00100 00101 /* ===================================================================== */ 00102 00103 /* .. Parameters .. */ 00104 /* .. */ 00105 /* .. Local Scalars .. */ 00106 /* .. */ 00107 /* .. External Subroutines .. */ 00108 /* .. */ 00109 /* .. Intrinsic Functions .. */ 00110 /* .. */ 00111 /* .. Executable Statements .. */ 00112 00113 /* Test the input arguments */ 00114 00115 /* Parameter adjustments */ 00116 a_dim1 = *lda; 00117 a_offset = 1 + a_dim1; 00118 a -= a_offset; 00119 --tau; 00120 --work; 00121 00122 /* Function Body */ 00123 *info = 0; 00124 if (*m < 0) { 00125 *info = -1; 00126 } else if (*n < 0) { 00127 *info = -2; 00128 } else if (*lda < max(1,*m)) { 00129 *info = -4; 00130 } 00131 if (*info != 0) { 00132 i__1 = -(*info); 00133 xerbla_("ZGEQL2", &i__1); 00134 return 0; 00135 } 00136 00137 k = min(*m,*n); 00138 00139 for (i__ = k; i__ >= 1; --i__) { 00140 00141 /* Generate elementary reflector H(i) to annihilate */ 00142 /* A(1:m-k+i-1,n-k+i) */ 00143 00144 i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; 00145 alpha.r = a[i__1].r, alpha.i = a[i__1].i; 00146 i__1 = *m - k + i__; 00147 zlarfp_(&i__1, &alpha, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &tau[ 00148 i__]); 00149 00150 /* Apply H(i)' to A(1:m-k+i,1:n-k+i-1) from the left */ 00151 00152 i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; 00153 a[i__1].r = 1., a[i__1].i = 0.; 00154 i__1 = *m - k + i__; 00155 i__2 = *n - k + i__ - 1; 00156 d_cnjg(&z__1, &tau[i__]); 00157 zlarf_("Left", &i__1, &i__2, &a[(*n - k + i__) * a_dim1 + 1], &c__1, & 00158 z__1, &a[a_offset], lda, &work[1]); 00159 i__1 = *m - k + i__ + (*n - k + i__) * a_dim1; 00160 a[i__1].r = alpha.r, a[i__1].i = alpha.i; 00161 /* L10: */ 00162 } 00163 return 0; 00164 00165 /* End of ZGEQL2 */ 00166 00167 } /* zgeql2_ */