zgeequb.c
Go to the documentation of this file.
00001 /* zgeequb.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zgeequb_(integer *m, integer *n, doublecomplex *a, 
00017         integer *lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, 
00018         doublereal *colcnd, doublereal *amax, integer *info)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, i__1, i__2, i__3;
00022     doublereal d__1, d__2, d__3, d__4;
00023 
00024     /* Builtin functions */
00025     double log(doublereal), d_imag(doublecomplex *), pow_di(doublereal *, 
00026             integer *);
00027 
00028     /* Local variables */
00029     integer i__, j;
00030     doublereal radix, rcmin, rcmax;
00031     extern doublereal dlamch_(char *);
00032     extern /* Subroutine */ int xerbla_(char *, integer *);
00033     doublereal bignum, logrdx, smlnum;
00034 
00035 
00036 /*     -- LAPACK routine (version 3.2)                                 -- */
00037 /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
00038 /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
00039 /*     -- November 2008                                                -- */
00040 
00041 /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
00042 /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
00043 
00044 /*     .. */
00045 /*     .. Scalar Arguments .. */
00046 /*     .. */
00047 /*     .. Array Arguments .. */
00048 /*     .. */
00049 
00050 /*  Purpose */
00051 /*  ======= */
00052 
00053 /*  ZGEEQUB computes row and column scalings intended to equilibrate an */
00054 /*  M-by-N matrix A and reduce its condition number.  R returns the row */
00055 /*  scale factors and C the column scale factors, chosen to try to make */
00056 /*  the largest element in each row and column of the matrix B with */
00057 /*  elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
00058 /*  the radix. */
00059 
00060 /*  R(i) and C(j) are restricted to be a power of the radix between */
00061 /*  SMLNUM = smallest safe number and BIGNUM = largest safe number.  Use */
00062 /*  of these scaling factors is not guaranteed to reduce the condition */
00063 /*  number of A but works well in practice. */
00064 
00065 /*  This routine differs from ZGEEQU by restricting the scaling factors */
00066 /*  to a power of the radix.  Baring over- and underflow, scaling by */
00067 /*  these factors introduces no additional rounding errors.  However, the */
00068 /*  scaled entries' magnitured are no longer approximately 1 but lie */
00069 /*  between sqrt(radix) and 1/sqrt(radix). */
00070 
00071 /*  Arguments */
00072 /*  ========= */
00073 
00074 /*  M       (input) INTEGER */
00075 /*          The number of rows of the matrix A.  M >= 0. */
00076 
00077 /*  N       (input) INTEGER */
00078 /*          The number of columns of the matrix A.  N >= 0. */
00079 
00080 /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
00081 /*          The M-by-N matrix whose equilibration factors are */
00082 /*          to be computed. */
00083 
00084 /*  LDA     (input) INTEGER */
00085 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00086 
00087 /*  R       (output) DOUBLE PRECISION array, dimension (M) */
00088 /*          If INFO = 0 or INFO > M, R contains the row scale factors */
00089 /*          for A. */
00090 
00091 /*  C       (output) DOUBLE PRECISION array, dimension (N) */
00092 /*          If INFO = 0,  C contains the column scale factors for A. */
00093 
00094 /*  ROWCND  (output) DOUBLE PRECISION */
00095 /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
00096 /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
00097 /*          AMAX is neither too large nor too small, it is not worth */
00098 /*          scaling by R. */
00099 
00100 /*  COLCND  (output) DOUBLE PRECISION */
00101 /*          If INFO = 0, COLCND contains the ratio of the smallest */
00102 /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
00103 /*          worth scaling by C. */
00104 
00105 /*  AMAX    (output) DOUBLE PRECISION */
00106 /*          Absolute value of largest matrix element.  If AMAX is very */
00107 /*          close to overflow or very close to underflow, the matrix */
00108 /*          should be scaled. */
00109 
00110 /*  INFO    (output) INTEGER */
00111 /*          = 0:  successful exit */
00112 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00113 /*          > 0:  if INFO = i,  and i is */
00114 /*                <= M:  the i-th row of A is exactly zero */
00115 /*                >  M:  the (i-M)-th column of A is exactly zero */
00116 
00117 /*  ===================================================================== */
00118 
00119 /*     .. Parameters .. */
00120 /*     .. */
00121 /*     .. Local Scalars .. */
00122 /*     .. */
00123 /*     .. External Functions .. */
00124 /*     .. */
00125 /*     .. External Subroutines .. */
00126 /*     .. */
00127 /*     .. Intrinsic Functions .. */
00128 /*     .. */
00129 /*     .. Statement Functions .. */
00130 /*     .. */
00131 /*     .. Statement Function definitions .. */
00132 /*     .. */
00133 /*     .. Executable Statements .. */
00134 
00135 /*     Test the input parameters. */
00136 
00137     /* Parameter adjustments */
00138     a_dim1 = *lda;
00139     a_offset = 1 + a_dim1;
00140     a -= a_offset;
00141     --r__;
00142     --c__;
00143 
00144     /* Function Body */
00145     *info = 0;
00146     if (*m < 0) {
00147         *info = -1;
00148     } else if (*n < 0) {
00149         *info = -2;
00150     } else if (*lda < max(1,*m)) {
00151         *info = -4;
00152     }
00153     if (*info != 0) {
00154         i__1 = -(*info);
00155         xerbla_("ZGEEQUB", &i__1);
00156         return 0;
00157     }
00158 
00159 /*     Quick return if possible. */
00160 
00161     if (*m == 0 || *n == 0) {
00162         *rowcnd = 1.;
00163         *colcnd = 1.;
00164         *amax = 0.;
00165         return 0;
00166     }
00167 
00168 /*     Get machine constants.  Assume SMLNUM is a power of the radix. */
00169 
00170     smlnum = dlamch_("S");
00171     bignum = 1. / smlnum;
00172     radix = dlamch_("B");
00173     logrdx = log(radix);
00174 
00175 /*     Compute row scale factors. */
00176 
00177     i__1 = *m;
00178     for (i__ = 1; i__ <= i__1; ++i__) {
00179         r__[i__] = 0.;
00180 /* L10: */
00181     }
00182 
00183 /*     Find the maximum element in each row. */
00184 
00185     i__1 = *n;
00186     for (j = 1; j <= i__1; ++j) {
00187         i__2 = *m;
00188         for (i__ = 1; i__ <= i__2; ++i__) {
00189 /* Computing MAX */
00190             i__3 = i__ + j * a_dim1;
00191             d__3 = r__[i__], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
00192                     d_imag(&a[i__ + j * a_dim1]), abs(d__2));
00193             r__[i__] = max(d__3,d__4);
00194 /* L20: */
00195         }
00196 /* L30: */
00197     }
00198     i__1 = *m;
00199     for (i__ = 1; i__ <= i__1; ++i__) {
00200         if (r__[i__] > 0.) {
00201             i__2 = (integer) (log(r__[i__]) / logrdx);
00202             r__[i__] = pow_di(&radix, &i__2);
00203         }
00204     }
00205 
00206 /*     Find the maximum and minimum scale factors. */
00207 
00208     rcmin = bignum;
00209     rcmax = 0.;
00210     i__1 = *m;
00211     for (i__ = 1; i__ <= i__1; ++i__) {
00212 /* Computing MAX */
00213         d__1 = rcmax, d__2 = r__[i__];
00214         rcmax = max(d__1,d__2);
00215 /* Computing MIN */
00216         d__1 = rcmin, d__2 = r__[i__];
00217         rcmin = min(d__1,d__2);
00218 /* L40: */
00219     }
00220     *amax = rcmax;
00221 
00222     if (rcmin == 0.) {
00223 
00224 /*        Find the first zero scale factor and return an error code. */
00225 
00226         i__1 = *m;
00227         for (i__ = 1; i__ <= i__1; ++i__) {
00228             if (r__[i__] == 0.) {
00229                 *info = i__;
00230                 return 0;
00231             }
00232 /* L50: */
00233         }
00234     } else {
00235 
00236 /*        Invert the scale factors. */
00237 
00238         i__1 = *m;
00239         for (i__ = 1; i__ <= i__1; ++i__) {
00240 /* Computing MIN */
00241 /* Computing MAX */
00242             d__2 = r__[i__];
00243             d__1 = max(d__2,smlnum);
00244             r__[i__] = 1. / min(d__1,bignum);
00245 /* L60: */
00246         }
00247 
00248 /*        Compute ROWCND = min(R(I)) / max(R(I)). */
00249 
00250         *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
00251     }
00252 
00253 /*     Compute column scale factors. */
00254 
00255     i__1 = *n;
00256     for (j = 1; j <= i__1; ++j) {
00257         c__[j] = 0.;
00258 /* L70: */
00259     }
00260 
00261 /*     Find the maximum element in each column, */
00262 /*     assuming the row scaling computed above. */
00263 
00264     i__1 = *n;
00265     for (j = 1; j <= i__1; ++j) {
00266         i__2 = *m;
00267         for (i__ = 1; i__ <= i__2; ++i__) {
00268 /* Computing MAX */
00269             i__3 = i__ + j * a_dim1;
00270             d__3 = c__[j], d__4 = ((d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
00271                     d_imag(&a[i__ + j * a_dim1]), abs(d__2))) * r__[i__];
00272             c__[j] = max(d__3,d__4);
00273 /* L80: */
00274         }
00275         if (c__[j] > 0.) {
00276             i__2 = (integer) (log(c__[j]) / logrdx);
00277             c__[j] = pow_di(&radix, &i__2);
00278         }
00279 /* L90: */
00280     }
00281 
00282 /*     Find the maximum and minimum scale factors. */
00283 
00284     rcmin = bignum;
00285     rcmax = 0.;
00286     i__1 = *n;
00287     for (j = 1; j <= i__1; ++j) {
00288 /* Computing MIN */
00289         d__1 = rcmin, d__2 = c__[j];
00290         rcmin = min(d__1,d__2);
00291 /* Computing MAX */
00292         d__1 = rcmax, d__2 = c__[j];
00293         rcmax = max(d__1,d__2);
00294 /* L100: */
00295     }
00296 
00297     if (rcmin == 0.) {
00298 
00299 /*        Find the first zero scale factor and return an error code. */
00300 
00301         i__1 = *n;
00302         for (j = 1; j <= i__1; ++j) {
00303             if (c__[j] == 0.) {
00304                 *info = *m + j;
00305                 return 0;
00306             }
00307 /* L110: */
00308         }
00309     } else {
00310 
00311 /*        Invert the scale factors. */
00312 
00313         i__1 = *n;
00314         for (j = 1; j <= i__1; ++j) {
00315 /* Computing MIN */
00316 /* Computing MAX */
00317             d__2 = c__[j];
00318             d__1 = max(d__2,smlnum);
00319             c__[j] = 1. / min(d__1,bignum);
00320 /* L120: */
00321         }
00322 
00323 /*        Compute COLCND = min(C(J)) / max(C(J)). */
00324 
00325         *colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
00326     }
00327 
00328     return 0;
00329 
00330 /*     End of ZGEEQUB */
00331 
00332 } /* zgeequb_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:31