zgeequ.c
Go to the documentation of this file.
00001 /* zgeequ.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zgeequ_(integer *m, integer *n, doublecomplex *a, 
00017         integer *lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, 
00018         doublereal *colcnd, doublereal *amax, integer *info)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, i__1, i__2, i__3;
00022     doublereal d__1, d__2, d__3, d__4;
00023 
00024     /* Builtin functions */
00025     double d_imag(doublecomplex *);
00026 
00027     /* Local variables */
00028     integer i__, j;
00029     doublereal rcmin, rcmax;
00030     extern doublereal dlamch_(char *);
00031     extern /* Subroutine */ int xerbla_(char *, integer *);
00032     doublereal bignum, smlnum;
00033 
00034 
00035 /*  -- LAPACK routine (version 3.2) -- */
00036 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00037 /*     November 2006 */
00038 
00039 /*     .. Scalar Arguments .. */
00040 /*     .. */
00041 /*     .. Array Arguments .. */
00042 /*     .. */
00043 
00044 /*  Purpose */
00045 /*  ======= */
00046 
00047 /*  ZGEEQU computes row and column scalings intended to equilibrate an */
00048 /*  M-by-N matrix A and reduce its condition number.  R returns the row */
00049 /*  scale factors and C the column scale factors, chosen to try to make */
00050 /*  the largest element in each row and column of the matrix B with */
00051 /*  elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
00052 
00053 /*  R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
00054 /*  number and BIGNUM = largest safe number.  Use of these scaling */
00055 /*  factors is not guaranteed to reduce the condition number of A but */
00056 /*  works well in practice. */
00057 
00058 /*  Arguments */
00059 /*  ========= */
00060 
00061 /*  M       (input) INTEGER */
00062 /*          The number of rows of the matrix A.  M >= 0. */
00063 
00064 /*  N       (input) INTEGER */
00065 /*          The number of columns of the matrix A.  N >= 0. */
00066 
00067 /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
00068 /*          The M-by-N matrix whose equilibration factors are */
00069 /*          to be computed. */
00070 
00071 /*  LDA     (input) INTEGER */
00072 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00073 
00074 /*  R       (output) DOUBLE PRECISION array, dimension (M) */
00075 /*          If INFO = 0 or INFO > M, R contains the row scale factors */
00076 /*          for A. */
00077 
00078 /*  C       (output) DOUBLE PRECISION array, dimension (N) */
00079 /*          If INFO = 0,  C contains the column scale factors for A. */
00080 
00081 /*  ROWCND  (output) DOUBLE PRECISION */
00082 /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
00083 /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
00084 /*          AMAX is neither too large nor too small, it is not worth */
00085 /*          scaling by R. */
00086 
00087 /*  COLCND  (output) DOUBLE PRECISION */
00088 /*          If INFO = 0, COLCND contains the ratio of the smallest */
00089 /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
00090 /*          worth scaling by C. */
00091 
00092 /*  AMAX    (output) DOUBLE PRECISION */
00093 /*          Absolute value of largest matrix element.  If AMAX is very */
00094 /*          close to overflow or very close to underflow, the matrix */
00095 /*          should be scaled. */
00096 
00097 /*  INFO    (output) INTEGER */
00098 /*          = 0:  successful exit */
00099 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00100 /*          > 0:  if INFO = i,  and i is */
00101 /*                <= M:  the i-th row of A is exactly zero */
00102 /*                >  M:  the (i-M)-th column of A is exactly zero */
00103 
00104 /*  ===================================================================== */
00105 
00106 /*     .. Parameters .. */
00107 /*     .. */
00108 /*     .. Local Scalars .. */
00109 /*     .. */
00110 /*     .. External Functions .. */
00111 /*     .. */
00112 /*     .. External Subroutines .. */
00113 /*     .. */
00114 /*     .. Intrinsic Functions .. */
00115 /*     .. */
00116 /*     .. Statement Functions .. */
00117 /*     .. */
00118 /*     .. Statement Function definitions .. */
00119 /*     .. */
00120 /*     .. Executable Statements .. */
00121 
00122 /*     Test the input parameters. */
00123 
00124     /* Parameter adjustments */
00125     a_dim1 = *lda;
00126     a_offset = 1 + a_dim1;
00127     a -= a_offset;
00128     --r__;
00129     --c__;
00130 
00131     /* Function Body */
00132     *info = 0;
00133     if (*m < 0) {
00134         *info = -1;
00135     } else if (*n < 0) {
00136         *info = -2;
00137     } else if (*lda < max(1,*m)) {
00138         *info = -4;
00139     }
00140     if (*info != 0) {
00141         i__1 = -(*info);
00142         xerbla_("ZGEEQU", &i__1);
00143         return 0;
00144     }
00145 
00146 /*     Quick return if possible */
00147 
00148     if (*m == 0 || *n == 0) {
00149         *rowcnd = 1.;
00150         *colcnd = 1.;
00151         *amax = 0.;
00152         return 0;
00153     }
00154 
00155 /*     Get machine constants. */
00156 
00157     smlnum = dlamch_("S");
00158     bignum = 1. / smlnum;
00159 
00160 /*     Compute row scale factors. */
00161 
00162     i__1 = *m;
00163     for (i__ = 1; i__ <= i__1; ++i__) {
00164         r__[i__] = 0.;
00165 /* L10: */
00166     }
00167 
00168 /*     Find the maximum element in each row. */
00169 
00170     i__1 = *n;
00171     for (j = 1; j <= i__1; ++j) {
00172         i__2 = *m;
00173         for (i__ = 1; i__ <= i__2; ++i__) {
00174 /* Computing MAX */
00175             i__3 = i__ + j * a_dim1;
00176             d__3 = r__[i__], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
00177                     d_imag(&a[i__ + j * a_dim1]), abs(d__2));
00178             r__[i__] = max(d__3,d__4);
00179 /* L20: */
00180         }
00181 /* L30: */
00182     }
00183 
00184 /*     Find the maximum and minimum scale factors. */
00185 
00186     rcmin = bignum;
00187     rcmax = 0.;
00188     i__1 = *m;
00189     for (i__ = 1; i__ <= i__1; ++i__) {
00190 /* Computing MAX */
00191         d__1 = rcmax, d__2 = r__[i__];
00192         rcmax = max(d__1,d__2);
00193 /* Computing MIN */
00194         d__1 = rcmin, d__2 = r__[i__];
00195         rcmin = min(d__1,d__2);
00196 /* L40: */
00197     }
00198     *amax = rcmax;
00199 
00200     if (rcmin == 0.) {
00201 
00202 /*        Find the first zero scale factor and return an error code. */
00203 
00204         i__1 = *m;
00205         for (i__ = 1; i__ <= i__1; ++i__) {
00206             if (r__[i__] == 0.) {
00207                 *info = i__;
00208                 return 0;
00209             }
00210 /* L50: */
00211         }
00212     } else {
00213 
00214 /*        Invert the scale factors. */
00215 
00216         i__1 = *m;
00217         for (i__ = 1; i__ <= i__1; ++i__) {
00218 /* Computing MIN */
00219 /* Computing MAX */
00220             d__2 = r__[i__];
00221             d__1 = max(d__2,smlnum);
00222             r__[i__] = 1. / min(d__1,bignum);
00223 /* L60: */
00224         }
00225 
00226 /*        Compute ROWCND = min(R(I)) / max(R(I)) */
00227 
00228         *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
00229     }
00230 
00231 /*     Compute column scale factors */
00232 
00233     i__1 = *n;
00234     for (j = 1; j <= i__1; ++j) {
00235         c__[j] = 0.;
00236 /* L70: */
00237     }
00238 
00239 /*     Find the maximum element in each column, */
00240 /*     assuming the row scaling computed above. */
00241 
00242     i__1 = *n;
00243     for (j = 1; j <= i__1; ++j) {
00244         i__2 = *m;
00245         for (i__ = 1; i__ <= i__2; ++i__) {
00246 /* Computing MAX */
00247             i__3 = i__ + j * a_dim1;
00248             d__3 = c__[j], d__4 = ((d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
00249                     d_imag(&a[i__ + j * a_dim1]), abs(d__2))) * r__[i__];
00250             c__[j] = max(d__3,d__4);
00251 /* L80: */
00252         }
00253 /* L90: */
00254     }
00255 
00256 /*     Find the maximum and minimum scale factors. */
00257 
00258     rcmin = bignum;
00259     rcmax = 0.;
00260     i__1 = *n;
00261     for (j = 1; j <= i__1; ++j) {
00262 /* Computing MIN */
00263         d__1 = rcmin, d__2 = c__[j];
00264         rcmin = min(d__1,d__2);
00265 /* Computing MAX */
00266         d__1 = rcmax, d__2 = c__[j];
00267         rcmax = max(d__1,d__2);
00268 /* L100: */
00269     }
00270 
00271     if (rcmin == 0.) {
00272 
00273 /*        Find the first zero scale factor and return an error code. */
00274 
00275         i__1 = *n;
00276         for (j = 1; j <= i__1; ++j) {
00277             if (c__[j] == 0.) {
00278                 *info = *m + j;
00279                 return 0;
00280             }
00281 /* L110: */
00282         }
00283     } else {
00284 
00285 /*        Invert the scale factors. */
00286 
00287         i__1 = *n;
00288         for (j = 1; j <= i__1; ++j) {
00289 /* Computing MIN */
00290 /* Computing MAX */
00291             d__2 = c__[j];
00292             d__1 = max(d__2,smlnum);
00293             c__[j] = 1. / min(d__1,bignum);
00294 /* L120: */
00295         }
00296 
00297 /*        Compute COLCND = min(C(J)) / max(C(J)) */
00298 
00299         *colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
00300     }
00301 
00302     return 0;
00303 
00304 /*     End of ZGEEQU */
00305 
00306 } /* zgeequ_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:31