zdrvsx.c
Go to the documentation of this file.
00001 /* zdrvsx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     integer selopt, seldim;
00020     logical selval[20];
00021     doublereal selwr[20], selwi[20];
00022 } sslct_;
00023 
00024 #define sslct_1 sslct_
00025 
00026 /* Table of constant values */
00027 
00028 static doublecomplex c_b1 = {0.,0.};
00029 static doublecomplex c_b2 = {1.,0.};
00030 static integer c__0 = 0;
00031 static integer c__4 = 4;
00032 static integer c__6 = 6;
00033 static doublereal c_b39 = 1.;
00034 static integer c__1 = 1;
00035 static doublereal c_b49 = 0.;
00036 static integer c__2 = 2;
00037 static logical c_false = FALSE_;
00038 static integer c__3 = 3;
00039 static integer c__7 = 7;
00040 static integer c__5 = 5;
00041 static logical c_true = TRUE_;
00042 static integer c__22 = 22;
00043 
00044 /* Subroutine */ int zdrvsx_(integer *nsizes, integer *nn, integer *ntypes, 
00045         logical *dotype, integer *iseed, doublereal *thresh, integer *niunit, 
00046         integer *nounit, doublecomplex *a, integer *lda, doublecomplex *h__, 
00047         doublecomplex *ht, doublecomplex *w, doublecomplex *wt, doublecomplex 
00048         *wtmp, doublecomplex *vs, integer *ldvs, doublecomplex *vs1, 
00049         doublereal *result, doublecomplex *work, integer *lwork, doublereal *
00050         rwork, logical *bwork, integer *info)
00051 {
00052     /* Initialized data */
00053 
00054     static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
00055     static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
00056     static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
00057     static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
00058 
00059     /* Format strings */
00060     static char fmt_9991[] = "(\002 ZDRVSX: \002,a,\002 returned INFO=\002,i"
00061             "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
00062             "(\002,3(i5,\002,\002),i5,\002)\002)";
00063     static char fmt_9999[] = "(/1x,a3,\002 -- Complex Schur Form Decompositi"
00064             "on Expert \002,\002Driver\002,/\002 Matrix types (see ZDRVSX for"
00065             " details): \002)";
00066     static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
00067             "rix.             \002,\002           \002,\002  5=Diagonal: geom"
00068             "etr. spaced entries.\002,/\002  2=Identity matrix.              "
00069             "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
00070             "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
00071             " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
00072             "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
00073             "ll, evenly spaced.\002)";
00074     static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
00075             "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
00076             "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
00077             "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
00078             "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
00079             "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
00080             " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
00081             "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
00082             "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
00083             ",\002 complx \002)";
00084     static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
00085             " \002,\002 21=Matrix \002,\002with small random entries.\002,"
00086             "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
00087     static char fmt_9995[] = "(\002 Tests performed with test threshold ="
00088             "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)"
00089             "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002  1/ulp"
00090             " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul"
00091             "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )"
00092             " (no sort) \002,/\002 4 = 0 if W are eigenvalues of T (no sort)"
00093             ",\002,\002  1/ulp otherwise\002,/\002 5 = 0 if T same no matter "
00094             "if VS computed (no sort),\002,\002  1/ulp otherwise\002,/\002 6 "
00095             "= 0 if W same no matter if VS computed (no sort)\002,\002,  1/ul"
00096             "p otherwise\002)";
00097     static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002"
00098             ",\002  1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | "
00099             "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / "
00100             "( n ulp ) (sort) \002,/\002 10 = 0 if W are eigenvalues of T (so"
00101             "rt),\002,\002  1/ulp otherwise\002,/\002 11 = 0 if T same no mat"
00102             "ter what else computed (sort),\002,\002  1/ulp otherwise\002,"
00103             "/\002 12 = 0 if W same no matter what else computed \002,\002(so"
00104             "rt), 1/ulp otherwise\002,/\002 13 = 0 if sorting succesful, 1/ul"
00105             "p otherwise\002,/\002 14 = 0 if RCONDE same no matter what else "
00106             "computed,\002,\002 1/ulp otherwise\002,/\002 15 = 0 if RCONDv sa"
00107             "me no matter what else computed,\002,\002 1/ulp otherwise\002,"
00108             "/\002 16 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002,/"
00109             "\002 17 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002)";
00110     static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
00111             "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
00112             "\002,g10.3)";
00113     static char fmt_9992[] = "(\002 N=\002,i5,\002, input example =\002,i3"
00114             ",\002,  test(\002,i2,\002)=\002,g10.3)";
00115 
00116     /* System generated locals */
00117     integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, 
00118             vs_offset, vs1_dim1, vs1_offset, i__1, i__2, i__3, i__4;
00119 
00120     /* Builtin functions */
00121     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00122     double sqrt(doublereal);
00123     integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
00124              s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
00125             e_rsle(void);
00126 
00127     /* Local variables */
00128     integer i__, j, n, iwk;
00129     doublereal ulp, cond;
00130     integer jcol;
00131     char path[3];
00132     integer nmax;
00133     doublereal unfl, ovfl;
00134     integer isrt;
00135     logical badnn;
00136     integer nfail, imode, iinfo;
00137     doublereal conds, anorm;
00138     integer islct[20];
00139     extern /* Subroutine */ int zget24_(logical *, integer *, doublereal *, 
00140             integer *, integer *, integer *, doublecomplex *, integer *, 
00141             doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
00142 , doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
00143             doublereal *, doublereal *, integer *, integer *, integer *, 
00144             doublereal *, doublecomplex *, integer *, doublereal *, logical *, 
00145              integer *);
00146     integer nslct, jsize, nerrs, itype, jtype, ntest;
00147     doublereal rtulp;
00148     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
00149     extern doublereal dlamch_(char *);
00150     doublereal rcdein;
00151     integer idumma[1], ioldsd[4];
00152     extern /* Subroutine */ int xerbla_(char *, integer *);
00153     doublereal rcdvin;
00154     extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer 
00155             *), zlatme_(integer *, char *, integer *, doublecomplex *, 
00156              integer *, doublereal *, doublecomplex *, char *, char *, char *, 
00157              char *, doublereal *, integer *, doublereal *, integer *, 
00158             integer *, doublereal *, doublecomplex *, integer *, 
00159             doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, 
00160             doublecomplex *, doublecomplex *, integer *);
00161     integer ntestf;
00162     extern /* Subroutine */ int zlatmr_(integer *, integer *, char *, integer 
00163             *, char *, doublecomplex *, integer *, doublereal *, 
00164             doublecomplex *, char *, char *, doublecomplex *, integer *, 
00165             doublereal *, doublecomplex *, integer *, doublereal *, char *, 
00166             integer *, integer *, integer *, doublereal *, doublereal *, char 
00167             *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, 
00168             integer *, char *, integer *, char *, doublereal *, integer *, 
00169             doublereal *, doublereal *, integer *, integer *, char *, 
00170             doublecomplex *, integer *, doublecomplex *, integer *);
00171     doublereal ulpinv;
00172     integer nnwork;
00173     doublereal rtulpi;
00174     integer mtypes, ntestt;
00175 
00176     /* Fortran I/O blocks */
00177     static cilist io___31 = { 0, 0, 0, fmt_9991, 0 };
00178     static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
00179     static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
00180     static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
00181     static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
00182     static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
00183     static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
00184     static cilist io___46 = { 0, 0, 0, fmt_9993, 0 };
00185     static cilist io___47 = { 0, 0, 1, 0, 0 };
00186     static cilist io___49 = { 0, 0, 0, 0, 0 };
00187     static cilist io___51 = { 0, 0, 0, 0, 0 };
00188     static cilist io___52 = { 0, 0, 0, 0, 0 };
00189     static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };
00190     static cilist io___54 = { 0, 0, 0, fmt_9998, 0 };
00191     static cilist io___55 = { 0, 0, 0, fmt_9997, 0 };
00192     static cilist io___56 = { 0, 0, 0, fmt_9996, 0 };
00193     static cilist io___57 = { 0, 0, 0, fmt_9995, 0 };
00194     static cilist io___58 = { 0, 0, 0, fmt_9994, 0 };
00195     static cilist io___59 = { 0, 0, 0, fmt_9992, 0 };
00196 
00197 
00198 
00199 /*  -- LAPACK test routine (version 3.1) -- */
00200 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00201 /*     November 2006 */
00202 
00203 /*     .. Scalar Arguments .. */
00204 /*     .. */
00205 /*     .. Array Arguments .. */
00206 /*     .. */
00207 
00208 /*  Purpose */
00209 /*  ======= */
00210 
00211 /*     ZDRVSX checks the nonsymmetric eigenvalue (Schur form) problem */
00212 /*     expert driver ZGEESX. */
00213 
00214 /*     ZDRVSX uses both test matrices generated randomly depending on */
00215 /*     data supplied in the calling sequence, as well as on data */
00216 /*     read from an input file and including precomputed condition */
00217 /*     numbers to which it compares the ones it computes. */
00218 
00219 /*     When ZDRVSX is called, a number of matrix "sizes" ("n's") and a */
00220 /*     number of matrix "types" are specified.  For each size ("n") */
00221 /*     and each type of matrix, one matrix will be generated and used */
00222 /*     to test the nonsymmetric eigenroutines.  For each matrix, 15 */
00223 /*     tests will be performed: */
00224 
00225 /*     (1)     0 if T is in Schur form, 1/ulp otherwise */
00226 /*            (no sorting of eigenvalues) */
00227 
00228 /*     (2)     | A - VS T VS' | / ( n |A| ulp ) */
00229 
00230 /*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
00231 /*       form  (no sorting of eigenvalues). */
00232 
00233 /*     (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). */
00234 
00235 /*     (4)     0     if W are eigenvalues of T */
00236 /*             1/ulp otherwise */
00237 /*             (no sorting of eigenvalues) */
00238 
00239 /*     (5)     0     if T(with VS) = T(without VS), */
00240 /*             1/ulp otherwise */
00241 /*             (no sorting of eigenvalues) */
00242 
00243 /*     (6)     0     if eigenvalues(with VS) = eigenvalues(without VS), */
00244 /*             1/ulp otherwise */
00245 /*             (no sorting of eigenvalues) */
00246 
00247 /*     (7)     0 if T is in Schur form, 1/ulp otherwise */
00248 /*             (with sorting of eigenvalues) */
00249 
00250 /*     (8)     | A - VS T VS' | / ( n |A| ulp ) */
00251 
00252 /*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
00253 /*       form  (with sorting of eigenvalues). */
00254 
00255 /*     (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). */
00256 
00257 /*     (10)    0     if W are eigenvalues of T */
00258 /*             1/ulp otherwise */
00259 /*             If workspace sufficient, also compare W with and */
00260 /*             without reciprocal condition numbers */
00261 /*             (with sorting of eigenvalues) */
00262 
00263 /*     (11)    0     if T(with VS) = T(without VS), */
00264 /*             1/ulp otherwise */
00265 /*             If workspace sufficient, also compare T with and without */
00266 /*             reciprocal condition numbers */
00267 /*             (with sorting of eigenvalues) */
00268 
00269 /*     (12)    0     if eigenvalues(with VS) = eigenvalues(without VS), */
00270 /*             1/ulp otherwise */
00271 /*             If workspace sufficient, also compare VS with and without */
00272 /*             reciprocal condition numbers */
00273 /*             (with sorting of eigenvalues) */
00274 
00275 /*     (13)    if sorting worked and SDIM is the number of */
00276 /*             eigenvalues which were SELECTed */
00277 /*             If workspace sufficient, also compare SDIM with and */
00278 /*             without reciprocal condition numbers */
00279 
00280 /*     (14)    if RCONDE the same no matter if VS and/or RCONDV computed */
00281 
00282 /*     (15)    if RCONDV the same no matter if VS and/or RCONDE computed */
00283 
00284 /*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
00285 /*     each element NN(j) specifies one size. */
00286 /*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
00287 /*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
00288 /*     Currently, the list of possible types is: */
00289 
00290 /*     (1)  The zero matrix. */
00291 /*     (2)  The identity matrix. */
00292 /*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */
00293 
00294 /*     (4)  A diagonal matrix with evenly spaced entries */
00295 /*          1, ..., ULP  and random complex angles. */
00296 /*          (ULP = (first number larger than 1) - 1 ) */
00297 /*     (5)  A diagonal matrix with geometrically spaced entries */
00298 /*          1, ..., ULP  and random complex angles. */
00299 /*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
00300 /*          and random complex angles. */
00301 
00302 /*     (7)  Same as (4), but multiplied by a constant near */
00303 /*          the overflow threshold */
00304 /*     (8)  Same as (4), but multiplied by a constant near */
00305 /*          the underflow threshold */
00306 
00307 /*     (9)  A matrix of the form  U' T U, where U is unitary and */
00308 /*          T has evenly spaced entries 1, ..., ULP with random */
00309 /*          complex angles on the diagonal and random O(1) entries in */
00310 /*          the upper triangle. */
00311 
00312 /*     (10) A matrix of the form  U' T U, where U is unitary and */
00313 /*          T has geometrically spaced entries 1, ..., ULP with random */
00314 /*          complex angles on the diagonal and random O(1) entries in */
00315 /*          the upper triangle. */
00316 
00317 /*     (11) A matrix of the form  U' T U, where U is orthogonal and */
00318 /*          T has "clustered" entries 1, ULP,..., ULP with random */
00319 /*          complex angles on the diagonal and random O(1) entries in */
00320 /*          the upper triangle. */
00321 
00322 /*     (12) A matrix of the form  U' T U, where U is unitary and */
00323 /*          T has complex eigenvalues randomly chosen from */
00324 /*          ULP < |z| < 1   and random O(1) entries in the upper */
00325 /*          triangle. */
00326 
00327 /*     (13) A matrix of the form  X' T X, where X has condition */
00328 /*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
00329 /*          with random complex angles on the diagonal and random O(1) */
00330 /*          entries in the upper triangle. */
00331 
00332 /*     (14) A matrix of the form  X' T X, where X has condition */
00333 /*          SQRT( ULP ) and T has geometrically spaced entries */
00334 /*          1, ..., ULP with random complex angles on the diagonal */
00335 /*          and random O(1) entries in the upper triangle. */
00336 
00337 /*     (15) A matrix of the form  X' T X, where X has condition */
00338 /*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
00339 /*          with random complex angles on the diagonal and random O(1) */
00340 /*          entries in the upper triangle. */
00341 
00342 /*     (16) A matrix of the form  X' T X, where X has condition */
00343 /*          SQRT( ULP ) and T has complex eigenvalues randomly chosen */
00344 /*          from ULP < |z| < 1 and random O(1) entries in the upper */
00345 /*          triangle. */
00346 
00347 /*     (17) Same as (16), but multiplied by a constant */
00348 /*          near the overflow threshold */
00349 /*     (18) Same as (16), but multiplied by a constant */
00350 /*          near the underflow threshold */
00351 
00352 /*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
00353 /*          If N is at least 4, all entries in first two rows and last */
00354 /*          row, and first column and last two columns are zero. */
00355 /*     (20) Same as (19), but multiplied by a constant */
00356 /*          near the overflow threshold */
00357 /*     (21) Same as (19), but multiplied by a constant */
00358 /*          near the underflow threshold */
00359 
00360 /*     In addition, an input file will be read from logical unit number */
00361 /*     NIUNIT. The file contains matrices along with precomputed */
00362 /*     eigenvalues and reciprocal condition numbers for the eigenvalue */
00363 /*     average and right invariant subspace. For these matrices, in */
00364 /*     addition to tests (1) to (15) we will compute the following two */
00365 /*     tests: */
00366 
00367 /*    (16)  |RCONDE - RCDEIN| / cond(RCONDE) */
00368 
00369 /*       RCONDE is the reciprocal average eigenvalue condition number */
00370 /*       computed by ZGEESX and RCDEIN (the precomputed true value) */
00371 /*       is supplied as input.  cond(RCONDE) is the condition number */
00372 /*       of RCONDE, and takes errors in computing RCONDE into account, */
00373 /*       so that the resulting quantity should be O(ULP). cond(RCONDE) */
00374 /*       is essentially given by norm(A)/RCONDV. */
00375 
00376 /*    (17)  |RCONDV - RCDVIN| / cond(RCONDV) */
00377 
00378 /*       RCONDV is the reciprocal right invariant subspace condition */
00379 /*       number computed by ZGEESX and RCDVIN (the precomputed true */
00380 /*       value) is supplied as input. cond(RCONDV) is the condition */
00381 /*       number of RCONDV, and takes errors in computing RCONDV into */
00382 /*       account, so that the resulting quantity should be O(ULP). */
00383 /*       cond(RCONDV) is essentially given by norm(A)/RCONDE. */
00384 
00385 /*  Arguments */
00386 /*  ========= */
00387 
00388 /*  NSIZES  (input) INTEGER */
00389 /*          The number of sizes of matrices to use.  NSIZES must be at */
00390 /*          least zero. If it is zero, no randomly generated matrices */
00391 /*          are tested, but any test matrices read from NIUNIT will be */
00392 /*          tested. */
00393 
00394 /*  NN      (input) INTEGER array, dimension (NSIZES) */
00395 /*          An array containing the sizes to be used for the matrices. */
00396 /*          Zero values will be skipped.  The values must be at least */
00397 /*          zero. */
00398 
00399 /*  NTYPES  (input) INTEGER */
00400 /*          The number of elements in DOTYPE. NTYPES must be at least */
00401 /*          zero. If it is zero, no randomly generated test matrices */
00402 /*          are tested, but and test matrices read from NIUNIT will be */
00403 /*          tested. If it is MAXTYP+1 and NSIZES is 1, then an */
00404 /*          additional type, MAXTYP+1 is defined, which is to use */
00405 /*          whatever matrix is in A.  This is only useful if */
00406 /*          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . */
00407 
00408 /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
00409 /*          If DOTYPE(j) is .TRUE., then for each size in NN a */
00410 /*          matrix of that size and of type j will be generated. */
00411 /*          If NTYPES is smaller than the maximum number of types */
00412 /*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
00413 /*          MAXTYP will not be generated.  If NTYPES is larger */
00414 /*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
00415 /*          will be ignored. */
00416 
00417 /*  ISEED   (input/output) INTEGER array, dimension (4) */
00418 /*          On entry ISEED specifies the seed of the random number */
00419 /*          generator. The array elements should be between 0 and 4095; */
00420 /*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
00421 /*          be odd.  The random number generator uses a linear */
00422 /*          congruential sequence limited to small integers, and so */
00423 /*          should produce machine independent random numbers. The */
00424 /*          values of ISEED are changed on exit, and can be used in the */
00425 /*          next call to ZDRVSX to continue the same random number */
00426 /*          sequence. */
00427 
00428 /*  THRESH  (input) DOUBLE PRECISION */
00429 /*          A test will count as "failed" if the "error", computed as */
00430 /*          described above, exceeds THRESH.  Note that the error */
00431 /*          is scaled to be O(1), so THRESH should be a reasonably */
00432 /*          small multiple of 1, e.g., 10 or 100.  In particular, */
00433 /*          it should not depend on the precision (single vs. double) */
00434 /*          or the size of the matrix.  It must be at least zero. */
00435 
00436 /*  NIUNIT  (input) INTEGER */
00437 /*          The FORTRAN unit number for reading in the data file of */
00438 /*          problems to solve. */
00439 
00440 /*  NOUNIT  (input) INTEGER */
00441 /*          The FORTRAN unit number for printing out error messages */
00442 /*          (e.g., if a routine returns INFO not equal to 0.) */
00443 
00444 /*  A       (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) */
00445 /*          Used to hold the matrix whose eigenvalues are to be */
00446 /*          computed.  On exit, A contains the last matrix actually used. */
00447 
00448 /*  LDA     (input) INTEGER */
00449 /*          The leading dimension of A, and H. LDA must be at */
00450 /*          least 1 and at least max( NN ). */
00451 
00452 /*  H       (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) */
00453 /*          Another copy of the test matrix A, modified by ZGEESX. */
00454 
00455 /*  HT      (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) */
00456 /*          Yet another copy of the test matrix A, modified by ZGEESX. */
00457 
00458 /*  W       (workspace) COMPLEX*16 array, dimension (max(NN)) */
00459 /*          The computed eigenvalues of A. */
00460 
00461 /*  WT      (workspace) COMPLEX*16 array, dimension (max(NN)) */
00462 /*          Like W, this array contains the eigenvalues of A, */
00463 /*          but those computed when ZGEESX only computes a partial */
00464 /*          eigendecomposition, i.e. not Schur vectors */
00465 
00466 /*  WTMP    (workspace) COMPLEX*16 array, dimension (max(NN)) */
00467 /*          More temporary storage for eigenvalues. */
00468 
00469 /*  VS      (workspace) COMPLEX*16 array, dimension (LDVS, max(NN)) */
00470 /*          VS holds the computed Schur vectors. */
00471 
00472 /*  LDVS    (input) INTEGER */
00473 /*          Leading dimension of VS. Must be at least max(1,max(NN)). */
00474 
00475 /*  VS1     (workspace) COMPLEX*16 array, dimension (LDVS, max(NN)) */
00476 /*          VS1 holds another copy of the computed Schur vectors. */
00477 
00478 /*  RESULT  (output) DOUBLE PRECISION array, dimension (17) */
00479 /*          The values computed by the 17 tests described above. */
00480 /*          The values are currently limited to 1/ulp, to avoid overflow. */
00481 
00482 /*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK) */
00483 
00484 /*  LWORK   (input) INTEGER */
00485 /*          The number of entries in WORK.  This must be at least */
00486 /*          max(1,2*NN(j)**2) for all j. */
00487 
00488 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
00489 
00490 /*  BWORK   (workspace) LOGICAL array, dimension (max(NN)) */
00491 
00492 /*  INFO    (output) INTEGER */
00493 /*          If 0,  successful exit. */
00494 /*            <0,  input parameter -INFO is incorrect */
00495 /*            >0,  ZLATMR, CLATMS, CLATME or ZGET24 returned an error */
00496 /*                 code and INFO is its absolute value */
00497 
00498 /* ----------------------------------------------------------------------- */
00499 
00500 /*     Some Local Variables and Parameters: */
00501 /*     ---- ----- --------- --- ---------- */
00502 /*     ZERO, ONE       Real 0 and 1. */
00503 /*     MAXTYP          The number of types defined. */
00504 /*     NMAX            Largest value in NN. */
00505 /*     NERRS           The number of tests which have exceeded THRESH */
00506 /*     COND, CONDS, */
00507 /*     IMODE           Values to be passed to the matrix generators. */
00508 /*     ANORM           Norm of A; passed to matrix generators. */
00509 
00510 /*     OVFL, UNFL      Overflow and underflow thresholds. */
00511 /*     ULP, ULPINV     Finest relative precision and its inverse. */
00512 /*     RTULP, RTULPI   Square roots of the previous 4 values. */
00513 /*             The following four arrays decode JTYPE: */
00514 /*     KTYPE(j)        The general type (1-10) for type "j". */
00515 /*     KMODE(j)        The MODE value to be passed to the matrix */
00516 /*                     generator for type "j". */
00517 /*     KMAGN(j)        The order of magnitude ( O(1), */
00518 /*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
00519 /*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
00520 /*                     1/sqrt(ulp).  (0 means irrelevant.) */
00521 
00522 /*  ===================================================================== */
00523 
00524 /*     .. Parameters .. */
00525 /*     .. */
00526 /*     .. Local Scalars .. */
00527 /*     .. */
00528 /*     .. Local Arrays .. */
00529 /*     .. */
00530 /*     .. Arrays in Common .. */
00531 /*     .. */
00532 /*     .. Scalars in Common .. */
00533 /*     .. */
00534 /*     .. Common blocks .. */
00535 /*     .. */
00536 /*     .. External Functions .. */
00537 /*     .. */
00538 /*     .. External Subroutines .. */
00539 /*     .. */
00540 /*     .. Intrinsic Functions .. */
00541 /*     .. */
00542 /*     .. Data statements .. */
00543     /* Parameter adjustments */
00544     --nn;
00545     --dotype;
00546     --iseed;
00547     ht_dim1 = *lda;
00548     ht_offset = 1 + ht_dim1;
00549     ht -= ht_offset;
00550     h_dim1 = *lda;
00551     h_offset = 1 + h_dim1;
00552     h__ -= h_offset;
00553     a_dim1 = *lda;
00554     a_offset = 1 + a_dim1;
00555     a -= a_offset;
00556     --w;
00557     --wt;
00558     --wtmp;
00559     vs1_dim1 = *ldvs;
00560     vs1_offset = 1 + vs1_dim1;
00561     vs1 -= vs1_offset;
00562     vs_dim1 = *ldvs;
00563     vs_offset = 1 + vs_dim1;
00564     vs -= vs_offset;
00565     --result;
00566     --work;
00567     --rwork;
00568     --bwork;
00569 
00570     /* Function Body */
00571 /*     .. */
00572 /*     .. Executable Statements .. */
00573 
00574     s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
00575     s_copy(path + 1, "SX", (ftnlen)2, (ftnlen)2);
00576 
00577 /*     Check for errors */
00578 
00579     ntestt = 0;
00580     ntestf = 0;
00581     *info = 0;
00582 
00583 /*     Important constants */
00584 
00585     badnn = FALSE_;
00586 
00587 /*     8 is the largest dimension in the input file of precomputed */
00588 /*     problems */
00589 
00590     nmax = 8;
00591     i__1 = *nsizes;
00592     for (j = 1; j <= i__1; ++j) {
00593 /* Computing MAX */
00594         i__2 = nmax, i__3 = nn[j];
00595         nmax = max(i__2,i__3);
00596         if (nn[j] < 0) {
00597             badnn = TRUE_;
00598         }
00599 /* L10: */
00600     }
00601 
00602 /*     Check for errors */
00603 
00604     if (*nsizes < 0) {
00605         *info = -1;
00606     } else if (badnn) {
00607         *info = -2;
00608     } else if (*ntypes < 0) {
00609         *info = -3;
00610     } else if (*thresh < 0.) {
00611         *info = -6;
00612     } else if (*niunit <= 0) {
00613         *info = -7;
00614     } else if (*nounit <= 0) {
00615         *info = -8;
00616     } else if (*lda < 1 || *lda < nmax) {
00617         *info = -10;
00618     } else if (*ldvs < 1 || *ldvs < nmax) {
00619         *info = -20;
00620     } else /* if(complicated condition) */ {
00621 /* Computing MAX */
00622 /* Computing 2nd power */
00623         i__3 = nmax;
00624         i__1 = nmax * 3, i__2 = i__3 * i__3 << 1;
00625         if (max(i__1,i__2) > *lwork) {
00626             *info = -24;
00627         }
00628     }
00629 
00630     if (*info != 0) {
00631         i__1 = -(*info);
00632         xerbla_("ZDRVSX", &i__1);
00633         return 0;
00634     }
00635 
00636 /*     If nothing to do check on NIUNIT */
00637 
00638     if (*nsizes == 0 || *ntypes == 0) {
00639         goto L150;
00640     }
00641 
00642 /*     More Important constants */
00643 
00644     unfl = dlamch_("Safe minimum");
00645     ovfl = 1. / unfl;
00646     dlabad_(&unfl, &ovfl);
00647     ulp = dlamch_("Precision");
00648     ulpinv = 1. / ulp;
00649     rtulp = sqrt(ulp);
00650     rtulpi = 1. / rtulp;
00651 
00652 /*     Loop over sizes, types */
00653 
00654     nerrs = 0;
00655 
00656     i__1 = *nsizes;
00657     for (jsize = 1; jsize <= i__1; ++jsize) {
00658         n = nn[jsize];
00659         if (*nsizes != 1) {
00660             mtypes = min(21,*ntypes);
00661         } else {
00662             mtypes = min(22,*ntypes);
00663         }
00664 
00665         i__2 = mtypes;
00666         for (jtype = 1; jtype <= i__2; ++jtype) {
00667             if (! dotype[jtype]) {
00668                 goto L130;
00669             }
00670 
00671 /*           Save ISEED in case of an error. */
00672 
00673             for (j = 1; j <= 4; ++j) {
00674                 ioldsd[j - 1] = iseed[j];
00675 /* L20: */
00676             }
00677 
00678 /*           Compute "A" */
00679 
00680 /*           Control parameters: */
00681 
00682 /*           KMAGN  KCONDS  KMODE        KTYPE */
00683 /*       =1  O(1)   1       clustered 1  zero */
00684 /*       =2  large  large   clustered 2  identity */
00685 /*       =3  small          exponential  Jordan */
00686 /*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
00687 /*       =5                 random log   symmetric, w/ eigenvalues */
00688 /*       =6                 random       general, w/ eigenvalues */
00689 /*       =7                              random diagonal */
00690 /*       =8                              random symmetric */
00691 /*       =9                              random general */
00692 /*       =10                             random triangular */
00693 
00694             if (mtypes > 21) {
00695                 goto L90;
00696             }
00697 
00698             itype = ktype[jtype - 1];
00699             imode = kmode[jtype - 1];
00700 
00701 /*           Compute norm */
00702 
00703             switch (kmagn[jtype - 1]) {
00704                 case 1:  goto L30;
00705                 case 2:  goto L40;
00706                 case 3:  goto L50;
00707             }
00708 
00709 L30:
00710             anorm = 1.;
00711             goto L60;
00712 
00713 L40:
00714             anorm = ovfl * ulp;
00715             goto L60;
00716 
00717 L50:
00718             anorm = unfl * ulpinv;
00719             goto L60;
00720 
00721 L60:
00722 
00723             zlaset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda);
00724             iinfo = 0;
00725             cond = ulpinv;
00726 
00727 /*           Special Matrices -- Identity & Jordan block */
00728 
00729             if (itype == 1) {
00730 
00731 /*              Zero */
00732 
00733                 iinfo = 0;
00734 
00735             } else if (itype == 2) {
00736 
00737 /*              Identity */
00738 
00739                 i__3 = n;
00740                 for (jcol = 1; jcol <= i__3; ++jcol) {
00741                     i__4 = jcol + jcol * a_dim1;
00742                     a[i__4].r = anorm, a[i__4].i = 0.;
00743 /* L70: */
00744                 }
00745 
00746             } else if (itype == 3) {
00747 
00748 /*              Jordan Block */
00749 
00750                 i__3 = n;
00751                 for (jcol = 1; jcol <= i__3; ++jcol) {
00752                     i__4 = jcol + jcol * a_dim1;
00753                     a[i__4].r = anorm, a[i__4].i = 0.;
00754                     if (jcol > 1) {
00755                         i__4 = jcol + (jcol - 1) * a_dim1;
00756                         a[i__4].r = 1., a[i__4].i = 0.;
00757                     }
00758 /* L80: */
00759                 }
00760 
00761             } else if (itype == 4) {
00762 
00763 /*              Diagonal Matrix, [Eigen]values Specified */
00764 
00765                 zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, 
00766                          &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[
00767                         n + 1], &iinfo);
00768 
00769             } else if (itype == 5) {
00770 
00771 /*              Symmetric, eigenvalues specified */
00772 
00773                 zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, 
00774                          &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
00775                          &iinfo);
00776 
00777             } else if (itype == 6) {
00778 
00779 /*              General, eigenvalues specified */
00780 
00781                 if (kconds[jtype - 1] == 1) {
00782                     conds = 1.;
00783                 } else if (kconds[jtype - 1] == 2) {
00784                     conds = rtulpi;
00785                 } else {
00786                     conds = 0.;
00787                 }
00788 
00789                 zlatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, 
00790                         " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, 
00791                         &anorm, &a[a_offset], lda, &work[(n << 1) + 1], &
00792                         iinfo);
00793 
00794             } else if (itype == 7) {
00795 
00796 /*              Diagonal, random eigenvalues */
00797 
00798                 zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00799                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00800                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &c__0, &
00801                         c__0, &c_b49, &anorm, "NO", &a[a_offset], lda, idumma, 
00802                          &iinfo);
00803 
00804             } else if (itype == 8) {
00805 
00806 /*              Symmetric, random eigenvalues */
00807 
00808                 zlatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b39, 
00809                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00810                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
00811                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00812                         iinfo);
00813 
00814             } else if (itype == 9) {
00815 
00816 /*              General, random eigenvalues */
00817 
00818                 zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00819                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00820                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, &
00821                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00822                         iinfo);
00823                 if (n >= 4) {
00824                     zlaset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], 
00825                             lda);
00826                     i__3 = n - 3;
00827                     zlaset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a[a_dim1 + 3]
00828 , lda);
00829                     i__3 = n - 3;
00830                     zlaset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a[(n - 1) * 
00831                             a_dim1 + 3], lda);
00832                     zlaset_("Full", &c__1, &n, &c_b1, &c_b1, &a[n + a_dim1], 
00833                             lda);
00834                 }
00835 
00836             } else if (itype == 10) {
00837 
00838 /*              Triangular, random eigenvalues */
00839 
00840                 zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, 
00841                         &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[(
00842                         n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &c__0, &
00843                         c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &
00844                         iinfo);
00845 
00846             } else {
00847 
00848                 iinfo = 1;
00849             }
00850 
00851             if (iinfo != 0) {
00852                 io___31.ciunit = *nounit;
00853                 s_wsfe(&io___31);
00854                 do_fio(&c__1, "Generator", (ftnlen)9);
00855                 do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00856                 do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00857                 do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00858                 do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
00859                 e_wsfe();
00860                 *info = abs(iinfo);
00861                 return 0;
00862             }
00863 
00864 L90:
00865 
00866 /*           Test for minimal and generous workspace */
00867 
00868             for (iwk = 1; iwk <= 2; ++iwk) {
00869                 if (iwk == 1) {
00870                     nnwork = n << 1;
00871                 } else {
00872 /* Computing MAX */
00873                     i__3 = n << 1, i__4 = n * (n + 1) / 2;
00874                     nnwork = max(i__3,i__4);
00875                 }
00876                 nnwork = max(nnwork,1);
00877 
00878                 zget24_(&c_false, &jtype, thresh, ioldsd, nounit, &n, &a[
00879                         a_offset], lda, &h__[h_offset], &ht[ht_offset], &w[1], 
00880                          &wt[1], &wtmp[1], &vs[vs_offset], ldvs, &vs1[
00881                         vs1_offset], &rcdein, &rcdvin, &nslct, islct, &c__0, &
00882                         result[1], &work[1], &nnwork, &rwork[1], &bwork[1], 
00883                         info);
00884 
00885 /*              Check for RESULT(j) > THRESH */
00886 
00887                 ntest = 0;
00888                 nfail = 0;
00889                 for (j = 1; j <= 15; ++j) {
00890                     if (result[j] >= 0.) {
00891                         ++ntest;
00892                     }
00893                     if (result[j] >= *thresh) {
00894                         ++nfail;
00895                     }
00896 /* L100: */
00897                 }
00898 
00899                 if (nfail > 0) {
00900                     ++ntestf;
00901                 }
00902                 if (ntestf == 1) {
00903                     io___40.ciunit = *nounit;
00904                     s_wsfe(&io___40);
00905                     do_fio(&c__1, path, (ftnlen)3);
00906                     e_wsfe();
00907                     io___41.ciunit = *nounit;
00908                     s_wsfe(&io___41);
00909                     e_wsfe();
00910                     io___42.ciunit = *nounit;
00911                     s_wsfe(&io___42);
00912                     e_wsfe();
00913                     io___43.ciunit = *nounit;
00914                     s_wsfe(&io___43);
00915                     e_wsfe();
00916                     io___44.ciunit = *nounit;
00917                     s_wsfe(&io___44);
00918                     do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(
00919                             doublereal));
00920                     e_wsfe();
00921                     io___45.ciunit = *nounit;
00922                     s_wsfe(&io___45);
00923                     e_wsfe();
00924                     ntestf = 2;
00925                 }
00926 
00927                 for (j = 1; j <= 15; ++j) {
00928                     if (result[j] >= *thresh) {
00929                         io___46.ciunit = *nounit;
00930                         s_wsfe(&io___46);
00931                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00932                         do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
00933                         do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
00934                                 integer));
00935                         do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
00936                                 ;
00937                         do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
00938                         do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(
00939                                 doublereal));
00940                         e_wsfe();
00941                     }
00942 /* L110: */
00943                 }
00944 
00945                 nerrs += nfail;
00946                 ntestt += ntest;
00947 
00948 /* L120: */
00949             }
00950 L130:
00951             ;
00952         }
00953 /* L140: */
00954     }
00955 
00956 L150:
00957 
00958 /*     Read in data from file to check accuracy of condition estimation */
00959 /*     Read input data until N=0 */
00960 
00961     jtype = 0;
00962 L160:
00963     io___47.ciunit = *niunit;
00964     i__1 = s_rsle(&io___47);
00965     if (i__1 != 0) {
00966         goto L200;
00967     }
00968     i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
00969     if (i__1 != 0) {
00970         goto L200;
00971     }
00972     i__1 = do_lio(&c__3, &c__1, (char *)&nslct, (ftnlen)sizeof(integer));
00973     if (i__1 != 0) {
00974         goto L200;
00975     }
00976     i__1 = do_lio(&c__3, &c__1, (char *)&isrt, (ftnlen)sizeof(integer));
00977     if (i__1 != 0) {
00978         goto L200;
00979     }
00980     i__1 = e_rsle();
00981     if (i__1 != 0) {
00982         goto L200;
00983     }
00984     if (n == 0) {
00985         goto L200;
00986     }
00987     ++jtype;
00988     iseed[1] = jtype;
00989     io___49.ciunit = *niunit;
00990     s_rsle(&io___49);
00991     i__1 = nslct;
00992     for (i__ = 1; i__ <= i__1; ++i__) {
00993         do_lio(&c__3, &c__1, (char *)&islct[i__ - 1], (ftnlen)sizeof(integer))
00994                 ;
00995     }
00996     e_rsle();
00997     i__1 = n;
00998     for (i__ = 1; i__ <= i__1; ++i__) {
00999         io___51.ciunit = *niunit;
01000         s_rsle(&io___51);
01001         i__2 = n;
01002         for (j = 1; j <= i__2; ++j) {
01003             do_lio(&c__7, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof(
01004                     doublecomplex));
01005         }
01006         e_rsle();
01007 /* L170: */
01008     }
01009     io___52.ciunit = *niunit;
01010     s_rsle(&io___52);
01011     do_lio(&c__5, &c__1, (char *)&rcdein, (ftnlen)sizeof(doublereal));
01012     do_lio(&c__5, &c__1, (char *)&rcdvin, (ftnlen)sizeof(doublereal));
01013     e_rsle();
01014 
01015     zget24_(&c_true, &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], lda, 
01016              &h__[h_offset], &ht[ht_offset], &w[1], &wt[1], &wtmp[1], &vs[
01017             vs_offset], ldvs, &vs1[vs1_offset], &rcdein, &rcdvin, &nslct, 
01018             islct, &isrt, &result[1], &work[1], lwork, &rwork[1], &bwork[1], 
01019             info);
01020 
01021 /*     Check for RESULT(j) > THRESH */
01022 
01023     ntest = 0;
01024     nfail = 0;
01025     for (j = 1; j <= 17; ++j) {
01026         if (result[j] >= 0.) {
01027             ++ntest;
01028         }
01029         if (result[j] >= *thresh) {
01030             ++nfail;
01031         }
01032 /* L180: */
01033     }
01034 
01035     if (nfail > 0) {
01036         ++ntestf;
01037     }
01038     if (ntestf == 1) {
01039         io___53.ciunit = *nounit;
01040         s_wsfe(&io___53);
01041         do_fio(&c__1, path, (ftnlen)3);
01042         e_wsfe();
01043         io___54.ciunit = *nounit;
01044         s_wsfe(&io___54);
01045         e_wsfe();
01046         io___55.ciunit = *nounit;
01047         s_wsfe(&io___55);
01048         e_wsfe();
01049         io___56.ciunit = *nounit;
01050         s_wsfe(&io___56);
01051         e_wsfe();
01052         io___57.ciunit = *nounit;
01053         s_wsfe(&io___57);
01054         do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
01055         e_wsfe();
01056         io___58.ciunit = *nounit;
01057         s_wsfe(&io___58);
01058         e_wsfe();
01059         ntestf = 2;
01060     }
01061     for (j = 1; j <= 17; ++j) {
01062         if (result[j] >= *thresh) {
01063             io___59.ciunit = *nounit;
01064             s_wsfe(&io___59);
01065             do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
01066             do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
01067             do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
01068             do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(doublereal));
01069             e_wsfe();
01070         }
01071 /* L190: */
01072     }
01073 
01074     nerrs += nfail;
01075     ntestt += ntest;
01076     goto L160;
01077 L200:
01078 
01079 /*     Summary */
01080 
01081     dlasum_(path, nounit, &nerrs, &ntestt);
01082 
01083 
01084 
01085     return 0;
01086 
01087 /*     End of ZDRVSX */
01088 
01089 } /* zdrvsx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:23