00001 /* stzrqf.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static real c_b8 = 1.f; 00020 00021 /* Subroutine */ int stzrqf_(integer *m, integer *n, real *a, integer *lda, 00022 real *tau, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1, i__2; 00026 real r__1; 00027 00028 /* Local variables */ 00029 integer i__, k, m1; 00030 extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 00031 integer *, real *, integer *, real *, integer *), sgemv_(char *, 00032 integer *, integer *, real *, real *, integer *, real *, integer * 00033 , real *, real *, integer *), scopy_(integer *, real *, 00034 integer *, real *, integer *), saxpy_(integer *, real *, real *, 00035 integer *, real *, integer *), xerbla_(char *, integer *), 00036 slarfp_(integer *, real *, real *, integer *, real *); 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* This routine is deprecated and has been replaced by routine STZRZF. */ 00052 00053 /* STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */ 00054 /* to upper triangular form by means of orthogonal transformations. */ 00055 00056 /* The upper trapezoidal matrix A is factored as */ 00057 00058 /* A = ( R 0 ) * Z, */ 00059 00060 /* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */ 00061 /* triangular matrix. */ 00062 00063 /* Arguments */ 00064 /* ========= */ 00065 00066 /* M (input) INTEGER */ 00067 /* The number of rows of the matrix A. M >= 0. */ 00068 00069 /* N (input) INTEGER */ 00070 /* The number of columns of the matrix A. N >= M. */ 00071 00072 /* A (input/output) REAL array, dimension (LDA,N) */ 00073 /* On entry, the leading M-by-N upper trapezoidal part of the */ 00074 /* array A must contain the matrix to be factorized. */ 00075 /* On exit, the leading M-by-M upper triangular part of A */ 00076 /* contains the upper triangular matrix R, and elements M+1 to */ 00077 /* N of the first M rows of A, with the array TAU, represent the */ 00078 /* orthogonal matrix Z as a product of M elementary reflectors. */ 00079 00080 /* LDA (input) INTEGER */ 00081 /* The leading dimension of the array A. LDA >= max(1,M). */ 00082 00083 /* TAU (output) REAL array, dimension (M) */ 00084 /* The scalar factors of the elementary reflectors. */ 00085 00086 /* INFO (output) INTEGER */ 00087 /* = 0: successful exit */ 00088 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00089 00090 /* Further Details */ 00091 /* =============== */ 00092 00093 /* The factorization is obtained by Householder's method. The kth */ 00094 /* transformation matrix, Z( k ), which is used to introduce zeros into */ 00095 /* the ( m - k + 1 )th row of A, is given in the form */ 00096 00097 /* Z( k ) = ( I 0 ), */ 00098 /* ( 0 T( k ) ) */ 00099 00100 /* where */ 00101 00102 /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ 00103 /* ( 0 ) */ 00104 /* ( z( k ) ) */ 00105 00106 /* tau is a scalar and z( k ) is an ( n - m ) element vector. */ 00107 /* tau and z( k ) are chosen to annihilate the elements of the kth row */ 00108 /* of X. */ 00109 00110 /* The scalar tau is returned in the kth element of TAU and the vector */ 00111 /* u( k ) in the kth row of A, such that the elements of z( k ) are */ 00112 /* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ 00113 /* the upper triangular part of A. */ 00114 00115 /* Z is given by */ 00116 00117 /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ 00118 00119 /* ===================================================================== */ 00120 00121 /* .. Parameters .. */ 00122 /* .. */ 00123 /* .. Local Scalars .. */ 00124 /* .. */ 00125 /* .. Intrinsic Functions .. */ 00126 /* .. */ 00127 /* .. External Subroutines .. */ 00128 /* .. */ 00129 /* .. Executable Statements .. */ 00130 00131 /* Test the input parameters. */ 00132 00133 /* Parameter adjustments */ 00134 a_dim1 = *lda; 00135 a_offset = 1 + a_dim1; 00136 a -= a_offset; 00137 --tau; 00138 00139 /* Function Body */ 00140 *info = 0; 00141 if (*m < 0) { 00142 *info = -1; 00143 } else if (*n < *m) { 00144 *info = -2; 00145 } else if (*lda < max(1,*m)) { 00146 *info = -4; 00147 } 00148 if (*info != 0) { 00149 i__1 = -(*info); 00150 xerbla_("STZRQF", &i__1); 00151 return 0; 00152 } 00153 00154 /* Perform the factorization. */ 00155 00156 if (*m == 0) { 00157 return 0; 00158 } 00159 if (*m == *n) { 00160 i__1 = *n; 00161 for (i__ = 1; i__ <= i__1; ++i__) { 00162 tau[i__] = 0.f; 00163 /* L10: */ 00164 } 00165 } else { 00166 /* Computing MIN */ 00167 i__1 = *m + 1; 00168 m1 = min(i__1,*n); 00169 for (k = *m; k >= 1; --k) { 00170 00171 /* Use a Householder reflection to zero the kth row of A. */ 00172 /* First set up the reflection. */ 00173 00174 i__1 = *n - *m + 1; 00175 slarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[ 00176 k]); 00177 00178 if (tau[k] != 0.f && k > 1) { 00179 00180 /* We now perform the operation A := A*P( k ). */ 00181 00182 /* Use the first ( k - 1 ) elements of TAU to store a( k ), */ 00183 /* where a( k ) consists of the first ( k - 1 ) elements of */ 00184 /* the kth column of A. Also let B denote the first */ 00185 /* ( k - 1 ) rows of the last ( n - m ) columns of A. */ 00186 00187 i__1 = k - 1; 00188 scopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1); 00189 00190 /* Form w = a( k ) + B*z( k ) in TAU. */ 00191 00192 i__1 = k - 1; 00193 i__2 = *n - *m; 00194 sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 + 00195 1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], & 00196 c__1); 00197 00198 /* Now form a( k ) := a( k ) - tau*w */ 00199 /* and B := B - tau*w*z( k )'. */ 00200 00201 i__1 = k - 1; 00202 r__1 = -tau[k]; 00203 saxpy_(&i__1, &r__1, &tau[1], &c__1, &a[k * a_dim1 + 1], & 00204 c__1); 00205 i__1 = k - 1; 00206 i__2 = *n - *m; 00207 r__1 = -tau[k]; 00208 sger_(&i__1, &i__2, &r__1, &tau[1], &c__1, &a[k + m1 * a_dim1] 00209 , lda, &a[m1 * a_dim1 + 1], lda); 00210 } 00211 /* L20: */ 00212 } 00213 } 00214 00215 return 0; 00216 00217 /* End of STZRQF */ 00218 00219 } /* stzrqf_ */