00001 /* stpt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static real c_b10 = -1.f; 00020 00021 /* Subroutine */ int stpt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *nrhs, real *ap, real *x, integer *ldx, real *b, integer *ldb, 00023 real *work, real *resid) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 real r__1, r__2; 00028 00029 /* Local variables */ 00030 integer j; 00031 real eps; 00032 extern logical lsame_(char *, char *); 00033 real anorm, bnorm; 00034 extern doublereal sasum_(integer *, real *, integer *); 00035 extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 00036 integer *); 00037 real xnorm; 00038 extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 00039 real *, integer *), stpmv_(char *, char *, char *, integer *, 00040 real *, real *, integer *); 00041 extern doublereal slamch_(char *), slantp_(char *, char *, char *, 00042 integer *, real *, real *); 00043 00044 00045 /* -- LAPACK test routine (version 3.1) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* STPT02 computes the residual for the computed solution to a */ 00058 /* triangular system of linear equations A*x = b or A'*x = b when */ 00059 /* the triangular matrix A is stored in packed format. Here A' is the */ 00060 /* transpose of A and x and b are N by NRHS matrices. The test ratio is */ 00061 /* the maximum over the number of right hand sides of */ 00062 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00063 /* where op(A) denotes A or A' and EPS is the machine epsilon. */ 00064 00065 /* Arguments */ 00066 /* ========= */ 00067 00068 /* UPLO (input) CHARACTER*1 */ 00069 /* Specifies whether the matrix A is upper or lower triangular. */ 00070 /* = 'U': Upper triangular */ 00071 /* = 'L': Lower triangular */ 00072 00073 /* TRANS (input) CHARACTER*1 */ 00074 /* Specifies the operation applied to A. */ 00075 /* = 'N': A *x = b (No transpose) */ 00076 /* = 'T': A'*x = b (Transpose) */ 00077 /* = 'C': A'*x = b (Conjugate transpose = Transpose) */ 00078 00079 /* DIAG (input) CHARACTER*1 */ 00080 /* Specifies whether or not the matrix A is unit triangular. */ 00081 /* = 'N': Non-unit triangular */ 00082 /* = 'U': Unit triangular */ 00083 00084 /* N (input) INTEGER */ 00085 /* The order of the matrix A. N >= 0. */ 00086 00087 /* NRHS (input) INTEGER */ 00088 /* The number of right hand sides, i.e., the number of columns */ 00089 /* of the matrices X and B. NRHS >= 0. */ 00090 00091 /* AP (input) REAL array, dimension (N*(N+1)/2) */ 00092 /* The upper or lower triangular matrix A, packed columnwise in */ 00093 /* a linear array. The j-th column of A is stored in the array */ 00094 /* AP as follows: */ 00095 /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ 00096 /* if UPLO = 'L', */ 00097 /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ 00098 00099 /* X (input) REAL array, dimension (LDX,NRHS) */ 00100 /* The computed solution vectors for the system of linear */ 00101 /* equations. */ 00102 00103 /* LDX (input) INTEGER */ 00104 /* The leading dimension of the array X. LDX >= max(1,N). */ 00105 00106 /* B (input) REAL array, dimension (LDB,NRHS) */ 00107 /* The right hand side vectors for the system of linear */ 00108 /* equations. */ 00109 00110 /* LDB (input) INTEGER */ 00111 /* The leading dimension of the array B. LDB >= max(1,N). */ 00112 00113 /* WORK (workspace) REAL array, dimension (N) */ 00114 00115 /* RESID (output) REAL */ 00116 /* The maximum over the number of right hand sides of */ 00117 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00118 00119 /* ===================================================================== */ 00120 00121 /* .. Parameters .. */ 00122 /* .. */ 00123 /* .. Local Scalars .. */ 00124 /* .. */ 00125 /* .. External Functions .. */ 00126 /* .. */ 00127 /* .. External Subroutines .. */ 00128 /* .. */ 00129 /* .. Intrinsic Functions .. */ 00130 /* .. */ 00131 /* .. Executable Statements .. */ 00132 00133 /* Quick exit if N = 0 or NRHS = 0 */ 00134 00135 /* Parameter adjustments */ 00136 --ap; 00137 x_dim1 = *ldx; 00138 x_offset = 1 + x_dim1; 00139 x -= x_offset; 00140 b_dim1 = *ldb; 00141 b_offset = 1 + b_dim1; 00142 b -= b_offset; 00143 --work; 00144 00145 /* Function Body */ 00146 if (*n <= 0 || *nrhs <= 0) { 00147 *resid = 0.f; 00148 return 0; 00149 } 00150 00151 /* Compute the 1-norm of A or A'. */ 00152 00153 if (lsame_(trans, "N")) { 00154 anorm = slantp_("1", uplo, diag, n, &ap[1], &work[1]); 00155 } else { 00156 anorm = slantp_("I", uplo, diag, n, &ap[1], &work[1]); 00157 } 00158 00159 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00160 00161 eps = slamch_("Epsilon"); 00162 if (anorm <= 0.f) { 00163 *resid = 1.f / eps; 00164 return 0; 00165 } 00166 00167 /* Compute the maximum over the number of right hand sides of */ 00168 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00169 00170 *resid = 0.f; 00171 i__1 = *nrhs; 00172 for (j = 1; j <= i__1; ++j) { 00173 scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00174 stpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1); 00175 saxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00176 bnorm = sasum_(n, &work[1], &c__1); 00177 xnorm = sasum_(n, &x[j * x_dim1 + 1], &c__1); 00178 if (xnorm <= 0.f) { 00179 *resid = 1.f / eps; 00180 } else { 00181 /* Computing MAX */ 00182 r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; 00183 *resid = dmax(r__1,r__2); 00184 } 00185 /* L10: */ 00186 } 00187 00188 return 0; 00189 00190 /* End of STPT02 */ 00191 00192 } /* stpt02_ */