stbt03.c
Go to the documentation of this file.
00001 /* stbt03.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int stbt03_(char *uplo, char *trans, char *diag, integer *n, 
00021         integer *kd, integer *nrhs, real *ab, integer *ldab, real *scale, 
00022         real *cnorm, real *tscal, real *x, integer *ldx, real *b, integer *
00023         ldb, real *work, real *resid)
00024 {
00025     /* System generated locals */
00026     integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
00027     real r__1, r__2, r__3;
00028 
00029     /* Local variables */
00030     integer j, ix;
00031     real eps, err;
00032     extern logical lsame_(char *, char *);
00033     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
00034     real xscal;
00035     extern /* Subroutine */ int stbmv_(char *, char *, char *, integer *, 
00036             integer *, real *, integer *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *);
00037     real tnorm, xnorm;
00038     extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 
00039             real *, integer *), slabad_(real *, real *);
00040     extern doublereal slamch_(char *);
00041     real bignum;
00042     extern integer isamax_(integer *, real *, integer *);
00043     real smlnum;
00044 
00045 
00046 /*  -- LAPACK test routine (version 3.1) -- */
00047 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00048 /*     November 2006 */
00049 
00050 /*     .. Scalar Arguments .. */
00051 /*     .. */
00052 /*     .. Array Arguments .. */
00053 /*     .. */
00054 
00055 /*  Purpose */
00056 /*  ======= */
00057 
00058 /*  STBT03 computes the residual for the solution to a scaled triangular */
00059 /*  system of equations  A*x = s*b  or  A'*x = s*b  when A is a */
00060 /*  triangular band matrix. Here A' is the transpose of A, s is a scalar, */
00061 /*  and x and b are N by NRHS matrices.  The test ratio is the maximum */
00062 /*  over the number of right hand sides of */
00063 /*     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
00064 /*  where op(A) denotes A or A' and EPS is the machine epsilon. */
00065 
00066 /*  Arguments */
00067 /*  ========= */
00068 
00069 /*  UPLO    (input) CHARACTER*1 */
00070 /*          Specifies whether the matrix A is upper or lower triangular. */
00071 /*          = 'U':  Upper triangular */
00072 /*          = 'L':  Lower triangular */
00073 
00074 /*  TRANS   (input) CHARACTER*1 */
00075 /*          Specifies the operation applied to A. */
00076 /*          = 'N':  A *x = b  (No transpose) */
00077 /*          = 'T':  A'*x = b  (Transpose) */
00078 /*          = 'C':  A'*x = b  (Conjugate transpose = Transpose) */
00079 
00080 /*  DIAG    (input) CHARACTER*1 */
00081 /*          Specifies whether or not the matrix A is unit triangular. */
00082 /*          = 'N':  Non-unit triangular */
00083 /*          = 'U':  Unit triangular */
00084 
00085 /*  N       (input) INTEGER */
00086 /*          The order of the matrix A.  N >= 0. */
00087 
00088 /*  KD      (input) INTEGER */
00089 /*          The number of superdiagonals or subdiagonals of the */
00090 /*          triangular band matrix A.  KD >= 0. */
00091 
00092 /*  NRHS    (input) INTEGER */
00093 /*          The number of right hand sides, i.e., the number of columns */
00094 /*          of the matrices X and B.  NRHS >= 0. */
00095 
00096 /*  AB      (input) REAL array, dimension (LDAB,N) */
00097 /*          The upper or lower triangular band matrix A, stored in the */
00098 /*          first kd+1 rows of the array. The j-th column of A is stored */
00099 /*          in the j-th column of the array AB as follows: */
00100 /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
00101 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
00102 
00103 /*  LDAB    (input) INTEGER */
00104 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00105 
00106 /*  SCALE   (input) REAL */
00107 /*          The scaling factor s used in solving the triangular system. */
00108 
00109 /*  CNORM   (input) REAL array, dimension (N) */
00110 /*          The 1-norms of the columns of A, not counting the diagonal. */
00111 
00112 /*  TSCAL   (input) REAL */
00113 /*          The scaling factor used in computing the 1-norms in CNORM. */
00114 /*          CNORM actually contains the column norms of TSCAL*A. */
00115 
00116 /*  X       (input) REAL array, dimension (LDX,NRHS) */
00117 /*          The computed solution vectors for the system of linear */
00118 /*          equations. */
00119 
00120 /*  LDX     (input) INTEGER */
00121 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00122 
00123 /*  B       (input) REAL array, dimension (LDB,NRHS) */
00124 /*          The right hand side vectors for the system of linear */
00125 /*          equations. */
00126 
00127 /*  LDB     (input) INTEGER */
00128 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00129 
00130 /*  WORK    (workspace) REAL array, dimension (N) */
00131 
00132 /*  RESID   (output) REAL */
00133 /*          The maximum over the number of right hand sides of */
00134 /*          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00135 
00136 /*  ===================================================================== */
00137 
00138 /*     .. Parameters .. */
00139 /*     .. */
00140 /*     .. Local Scalars .. */
00141 /*     .. */
00142 /*     .. External Functions .. */
00143 /*     .. */
00144 /*     .. External Subroutines .. */
00145 /*     .. */
00146 /*     .. Intrinsic Functions .. */
00147 /*     .. */
00148 /*     .. Executable Statements .. */
00149 
00150 /*     Quick exit if N = 0 */
00151 
00152     /* Parameter adjustments */
00153     ab_dim1 = *ldab;
00154     ab_offset = 1 + ab_dim1;
00155     ab -= ab_offset;
00156     --cnorm;
00157     x_dim1 = *ldx;
00158     x_offset = 1 + x_dim1;
00159     x -= x_offset;
00160     b_dim1 = *ldb;
00161     b_offset = 1 + b_dim1;
00162     b -= b_offset;
00163     --work;
00164 
00165     /* Function Body */
00166     if (*n <= 0 || *nrhs <= 0) {
00167         *resid = 0.f;
00168         return 0;
00169     }
00170     eps = slamch_("Epsilon");
00171     smlnum = slamch_("Safe minimum");
00172     bignum = 1.f / smlnum;
00173     slabad_(&smlnum, &bignum);
00174 
00175 /*     Compute the norm of the triangular matrix A using the column */
00176 /*     norms already computed by SLATBS. */
00177 
00178     tnorm = 0.f;
00179     if (lsame_(diag, "N")) {
00180         if (lsame_(uplo, "U")) {
00181             i__1 = *n;
00182             for (j = 1; j <= i__1; ++j) {
00183 /* Computing MAX */
00184                 r__2 = tnorm, r__3 = *tscal * (r__1 = ab[*kd + 1 + j * 
00185                         ab_dim1], dabs(r__1)) + cnorm[j];
00186                 tnorm = dmax(r__2,r__3);
00187 /* L10: */
00188             }
00189         } else {
00190             i__1 = *n;
00191             for (j = 1; j <= i__1; ++j) {
00192 /* Computing MAX */
00193                 r__2 = tnorm, r__3 = *tscal * (r__1 = ab[j * ab_dim1 + 1], 
00194                         dabs(r__1)) + cnorm[j];
00195                 tnorm = dmax(r__2,r__3);
00196 /* L20: */
00197             }
00198         }
00199     } else {
00200         i__1 = *n;
00201         for (j = 1; j <= i__1; ++j) {
00202 /* Computing MAX */
00203             r__1 = tnorm, r__2 = *tscal + cnorm[j];
00204             tnorm = dmax(r__1,r__2);
00205 /* L30: */
00206         }
00207     }
00208 
00209 /*     Compute the maximum over the number of right hand sides of */
00210 /*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00211 
00212     *resid = 0.f;
00213     i__1 = *nrhs;
00214     for (j = 1; j <= i__1; ++j) {
00215         scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
00216         ix = isamax_(n, &work[1], &c__1);
00217 /* Computing MAX */
00218         r__2 = 1.f, r__3 = (r__1 = x[ix + j * x_dim1], dabs(r__1));
00219         xnorm = dmax(r__2,r__3);
00220         xscal = 1.f / xnorm / (real) (*kd + 1);
00221         sscal_(n, &xscal, &work[1], &c__1);
00222         stbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
00223                 c__1);
00224         r__1 = -(*scale) * xscal;
00225         saxpy_(n, &r__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00226         ix = isamax_(n, &work[1], &c__1);
00227         err = *tscal * (r__1 = work[ix], dabs(r__1));
00228         ix = isamax_(n, &x[j * x_dim1 + 1], &c__1);
00229         xnorm = (r__1 = x[ix + j * x_dim1], dabs(r__1));
00230         if (err * smlnum <= xnorm) {
00231             if (xnorm > 0.f) {
00232                 err /= xnorm;
00233             }
00234         } else {
00235             if (err > 0.f) {
00236                 err = 1.f / eps;
00237             }
00238         }
00239         if (err * smlnum <= tnorm) {
00240             if (tnorm > 0.f) {
00241                 err /= tnorm;
00242             }
00243         } else {
00244             if (err > 0.f) {
00245                 err = 1.f / eps;
00246             }
00247         }
00248         *resid = dmax(*resid,err);
00249 /* L40: */
00250     }
00251 
00252     return 0;
00253 
00254 /*     End of STBT03 */
00255 
00256 } /* stbt03_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:14