00001 /* ssyt01.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static real c_b5 = 0.f; 00019 static real c_b6 = 1.f; 00020 00021 /* Subroutine */ int ssyt01_(char *uplo, integer *n, real *a, integer *lda, 00022 real *afac, integer *ldafac, integer *ipiv, real *c__, integer *ldc, 00023 real *rwork, real *resid) 00024 { 00025 /* System generated locals */ 00026 integer a_dim1, a_offset, afac_dim1, afac_offset, c_dim1, c_offset, i__1, 00027 i__2; 00028 00029 /* Local variables */ 00030 integer i__, j; 00031 real eps; 00032 integer info; 00033 extern logical lsame_(char *, char *); 00034 real anorm; 00035 extern doublereal slamch_(char *); 00036 extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, 00037 real *, real *, integer *); 00038 extern doublereal slansy_(char *, char *, integer *, real *, integer *, 00039 real *); 00040 extern /* Subroutine */ int slavsy_(char *, char *, char *, integer *, 00041 integer *, real *, integer *, integer *, real *, integer *, 00042 integer *); 00043 00044 00045 /* -- LAPACK test routine (version 3.1) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* SSYT01 reconstructs a symmetric indefinite matrix A from its */ 00058 /* block L*D*L' or U*D*U' factorization and computes the residual */ 00059 /* norm( C - A ) / ( N * norm(A) * EPS ), */ 00060 /* where C is the reconstructed matrix and EPS is the machine epsilon. */ 00061 00062 /* Arguments */ 00063 /* ========== */ 00064 00065 /* UPLO (input) CHARACTER*1 */ 00066 /* Specifies whether the upper or lower triangular part of the */ 00067 /* symmetric matrix A is stored: */ 00068 /* = 'U': Upper triangular */ 00069 /* = 'L': Lower triangular */ 00070 00071 /* N (input) INTEGER */ 00072 /* The number of rows and columns of the matrix A. N >= 0. */ 00073 00074 /* A (input) REAL array, dimension (LDA,N) */ 00075 /* The original symmetric matrix A. */ 00076 00077 /* LDA (input) INTEGER */ 00078 /* The leading dimension of the array A. LDA >= max(1,N) */ 00079 00080 /* AFAC (input) REAL array, dimension (LDAFAC,N) */ 00081 /* The factored form of the matrix A. AFAC contains the block */ 00082 /* diagonal matrix D and the multipliers used to obtain the */ 00083 /* factor L or U from the block L*D*L' or U*D*U' factorization */ 00084 /* as computed by SSYTRF. */ 00085 00086 /* LDAFAC (input) INTEGER */ 00087 /* The leading dimension of the array AFAC. LDAFAC >= max(1,N). */ 00088 00089 /* IPIV (input) INTEGER array, dimension (N) */ 00090 /* The pivot indices from SSYTRF. */ 00091 00092 /* C (workspace) REAL array, dimension (LDC,N) */ 00093 00094 /* LDC (integer) INTEGER */ 00095 /* The leading dimension of the array C. LDC >= max(1,N). */ 00096 00097 /* RWORK (workspace) REAL array, dimension (N) */ 00098 00099 /* RESID (output) REAL */ 00100 /* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) */ 00101 /* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) */ 00102 00103 /* ===================================================================== */ 00104 00105 /* .. Parameters .. */ 00106 /* .. */ 00107 /* .. Local Scalars .. */ 00108 /* .. */ 00109 /* .. External Functions .. */ 00110 /* .. */ 00111 /* .. External Subroutines .. */ 00112 /* .. */ 00113 /* .. Intrinsic Functions .. */ 00114 /* .. */ 00115 /* .. Executable Statements .. */ 00116 00117 /* Quick exit if N = 0. */ 00118 00119 /* Parameter adjustments */ 00120 a_dim1 = *lda; 00121 a_offset = 1 + a_dim1; 00122 a -= a_offset; 00123 afac_dim1 = *ldafac; 00124 afac_offset = 1 + afac_dim1; 00125 afac -= afac_offset; 00126 --ipiv; 00127 c_dim1 = *ldc; 00128 c_offset = 1 + c_dim1; 00129 c__ -= c_offset; 00130 --rwork; 00131 00132 /* Function Body */ 00133 if (*n <= 0) { 00134 *resid = 0.f; 00135 return 0; 00136 } 00137 00138 /* Determine EPS and the norm of A. */ 00139 00140 eps = slamch_("Epsilon"); 00141 anorm = slansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); 00142 00143 /* Initialize C to the identity matrix. */ 00144 00145 slaset_("Full", n, n, &c_b5, &c_b6, &c__[c_offset], ldc); 00146 00147 /* Call SLAVSY to form the product D * U' (or D * L' ). */ 00148 00149 slavsy_(uplo, "Transpose", "Non-unit", n, n, &afac[afac_offset], ldafac, & 00150 ipiv[1], &c__[c_offset], ldc, &info); 00151 00152 /* Call SLAVSY again to multiply by U (or L ). */ 00153 00154 slavsy_(uplo, "No transpose", "Unit", n, n, &afac[afac_offset], ldafac, & 00155 ipiv[1], &c__[c_offset], ldc, &info); 00156 00157 /* Compute the difference C - A . */ 00158 00159 if (lsame_(uplo, "U")) { 00160 i__1 = *n; 00161 for (j = 1; j <= i__1; ++j) { 00162 i__2 = j; 00163 for (i__ = 1; i__ <= i__2; ++i__) { 00164 c__[i__ + j * c_dim1] -= a[i__ + j * a_dim1]; 00165 /* L10: */ 00166 } 00167 /* L20: */ 00168 } 00169 } else { 00170 i__1 = *n; 00171 for (j = 1; j <= i__1; ++j) { 00172 i__2 = *n; 00173 for (i__ = j; i__ <= i__2; ++i__) { 00174 c__[i__ + j * c_dim1] -= a[i__ + j * a_dim1]; 00175 /* L30: */ 00176 } 00177 /* L40: */ 00178 } 00179 } 00180 00181 /* Compute norm( C - A ) / ( N * norm(A) * EPS ) */ 00182 00183 *resid = slansy_("1", uplo, n, &c__[c_offset], ldc, &rwork[1]); 00184 00185 if (anorm <= 0.f) { 00186 if (*resid != 0.f) { 00187 *resid = 1.f / eps; 00188 } 00189 } else { 00190 *resid = *resid / (real) (*n) / anorm / eps; 00191 } 00192 00193 return 0; 00194 00195 /* End of SSYT01 */ 00196 00197 } /* ssyt01_ */