00001 /* ssyevr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__10 = 10; 00019 static integer c__1 = 1; 00020 static integer c__2 = 2; 00021 static integer c__3 = 3; 00022 static integer c__4 = 4; 00023 static integer c_n1 = -1; 00024 00025 /* Subroutine */ int ssyevr_(char *jobz, char *range, char *uplo, integer *n, 00026 real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu, 00027 real *abstol, integer *m, real *w, real *z__, integer *ldz, integer * 00028 isuppz, real *work, integer *lwork, integer *iwork, integer *liwork, 00029 integer *info) 00030 { 00031 /* System generated locals */ 00032 integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; 00033 real r__1, r__2; 00034 00035 /* Builtin functions */ 00036 double sqrt(doublereal); 00037 00038 /* Local variables */ 00039 integer i__, j, nb, jj; 00040 real eps, vll, vuu, tmp1; 00041 integer indd, inde; 00042 real anrm; 00043 integer imax; 00044 real rmin, rmax; 00045 logical test; 00046 integer inddd, indee; 00047 real sigma; 00048 extern logical lsame_(char *, char *); 00049 integer iinfo; 00050 extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); 00051 char order[1]; 00052 integer indwk, lwmin; 00053 logical lower; 00054 extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 00055 integer *), sswap_(integer *, real *, integer *, real *, integer * 00056 ); 00057 logical wantz, alleig, indeig; 00058 integer iscale, ieeeok, indibl, indifl; 00059 logical valeig; 00060 extern doublereal slamch_(char *); 00061 real safmin; 00062 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00063 integer *, integer *); 00064 extern /* Subroutine */ int xerbla_(char *, integer *); 00065 real abstll, bignum; 00066 integer indtau, indisp, indiwo, indwkn, liwmin; 00067 logical tryrac; 00068 extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *, 00069 real *, integer *, integer *, real *, integer *, real *, integer * 00070 , integer *, integer *), ssterf_(integer *, real *, real *, 00071 integer *); 00072 integer llwrkn, llwork, nsplit; 00073 real smlnum; 00074 extern doublereal slansy_(char *, char *, integer *, real *, integer *, 00075 real *); 00076 extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 00077 real *, integer *, integer *, real *, real *, real *, integer *, 00078 integer *, real *, integer *, integer *, real *, integer *, 00079 integer *), sstemr_(char *, char *, integer *, 00080 real *, real *, real *, real *, integer *, integer *, integer *, 00081 real *, real *, integer *, integer *, integer *, logical *, real * 00082 , integer *, integer *, integer *, integer *); 00083 integer lwkopt; 00084 logical lquery; 00085 extern /* Subroutine */ int sormtr_(char *, char *, char *, integer *, 00086 integer *, real *, integer *, real *, real *, integer *, real *, 00087 integer *, integer *), ssytrd_(char *, 00088 integer *, real *, integer *, real *, real *, real *, real *, 00089 integer *, integer *); 00090 00091 00092 /* -- LAPACK driver routine (version 3.2) -- */ 00093 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00094 /* November 2006 */ 00095 00096 /* .. Scalar Arguments .. */ 00097 /* .. */ 00098 /* .. Array Arguments .. */ 00099 /* .. */ 00100 00101 /* Purpose */ 00102 /* ======= */ 00103 00104 /* SSYEVR computes selected eigenvalues and, optionally, eigenvectors */ 00105 /* of a real symmetric matrix A. Eigenvalues and eigenvectors can be */ 00106 /* selected by specifying either a range of values or a range of */ 00107 /* indices for the desired eigenvalues. */ 00108 00109 /* SSYEVR first reduces the matrix A to tridiagonal form T with a call */ 00110 /* to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute */ 00111 /* the eigenspectrum using Relatively Robust Representations. SSTEMR */ 00112 /* computes eigenvalues by the dqds algorithm, while orthogonal */ 00113 /* eigenvectors are computed from various "good" L D L^T representations */ 00114 /* (also known as Relatively Robust Representations). Gram-Schmidt */ 00115 /* orthogonalization is avoided as far as possible. More specifically, */ 00116 /* the various steps of the algorithm are as follows. */ 00117 00118 /* For each unreduced block (submatrix) of T, */ 00119 /* (a) Compute T - sigma I = L D L^T, so that L and D */ 00120 /* define all the wanted eigenvalues to high relative accuracy. */ 00121 /* This means that small relative changes in the entries of D and L */ 00122 /* cause only small relative changes in the eigenvalues and */ 00123 /* eigenvectors. The standard (unfactored) representation of the */ 00124 /* tridiagonal matrix T does not have this property in general. */ 00125 /* (b) Compute the eigenvalues to suitable accuracy. */ 00126 /* If the eigenvectors are desired, the algorithm attains full */ 00127 /* accuracy of the computed eigenvalues only right before */ 00128 /* the corresponding vectors have to be computed, see steps c) and d). */ 00129 /* (c) For each cluster of close eigenvalues, select a new */ 00130 /* shift close to the cluster, find a new factorization, and refine */ 00131 /* the shifted eigenvalues to suitable accuracy. */ 00132 /* (d) For each eigenvalue with a large enough relative separation compute */ 00133 /* the corresponding eigenvector by forming a rank revealing twisted */ 00134 /* factorization. Go back to (c) for any clusters that remain. */ 00135 00136 /* The desired accuracy of the output can be specified by the input */ 00137 /* parameter ABSTOL. */ 00138 00139 /* For more details, see SSTEMR's documentation and: */ 00140 /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */ 00141 /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */ 00142 /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */ 00143 /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */ 00144 /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */ 00145 /* 2004. Also LAPACK Working Note 154. */ 00146 /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */ 00147 /* tridiagonal eigenvalue/eigenvector problem", */ 00148 /* Computer Science Division Technical Report No. UCB/CSD-97-971, */ 00149 /* UC Berkeley, May 1997. */ 00150 00151 00152 /* Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested */ 00153 /* on machines which conform to the ieee-754 floating point standard. */ 00154 /* SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and */ 00155 /* when partial spectrum requests are made. */ 00156 00157 /* Normal execution of SSTEMR may create NaNs and infinities and */ 00158 /* hence may abort due to a floating point exception in environments */ 00159 /* which do not handle NaNs and infinities in the ieee standard default */ 00160 /* manner. */ 00161 00162 /* Arguments */ 00163 /* ========= */ 00164 00165 /* JOBZ (input) CHARACTER*1 */ 00166 /* = 'N': Compute eigenvalues only; */ 00167 /* = 'V': Compute eigenvalues and eigenvectors. */ 00168 00169 /* RANGE (input) CHARACTER*1 */ 00170 /* = 'A': all eigenvalues will be found. */ 00171 /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ 00172 /* will be found. */ 00173 /* = 'I': the IL-th through IU-th eigenvalues will be found. */ 00174 /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */ 00175 /* ********* SSTEIN are called */ 00176 00177 /* UPLO (input) CHARACTER*1 */ 00178 /* = 'U': Upper triangle of A is stored; */ 00179 /* = 'L': Lower triangle of A is stored. */ 00180 00181 /* N (input) INTEGER */ 00182 /* The order of the matrix A. N >= 0. */ 00183 00184 /* A (input/output) REAL array, dimension (LDA, N) */ 00185 /* On entry, the symmetric matrix A. If UPLO = 'U', the */ 00186 /* leading N-by-N upper triangular part of A contains the */ 00187 /* upper triangular part of the matrix A. If UPLO = 'L', */ 00188 /* the leading N-by-N lower triangular part of A contains */ 00189 /* the lower triangular part of the matrix A. */ 00190 /* On exit, the lower triangle (if UPLO='L') or the upper */ 00191 /* triangle (if UPLO='U') of A, including the diagonal, is */ 00192 /* destroyed. */ 00193 00194 /* LDA (input) INTEGER */ 00195 /* The leading dimension of the array A. LDA >= max(1,N). */ 00196 00197 /* VL (input) REAL */ 00198 /* VU (input) REAL */ 00199 /* If RANGE='V', the lower and upper bounds of the interval to */ 00200 /* be searched for eigenvalues. VL < VU. */ 00201 /* Not referenced if RANGE = 'A' or 'I'. */ 00202 00203 /* IL (input) INTEGER */ 00204 /* IU (input) INTEGER */ 00205 /* If RANGE='I', the indices (in ascending order) of the */ 00206 /* smallest and largest eigenvalues to be returned. */ 00207 /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ 00208 /* Not referenced if RANGE = 'A' or 'V'. */ 00209 00210 /* ABSTOL (input) REAL */ 00211 /* The absolute error tolerance for the eigenvalues. */ 00212 /* An approximate eigenvalue is accepted as converged */ 00213 /* when it is determined to lie in an interval [a,b] */ 00214 /* of width less than or equal to */ 00215 00216 /* ABSTOL + EPS * max( |a|,|b| ) , */ 00217 00218 /* where EPS is the machine precision. If ABSTOL is less than */ 00219 /* or equal to zero, then EPS*|T| will be used in its place, */ 00220 /* where |T| is the 1-norm of the tridiagonal matrix obtained */ 00221 /* by reducing A to tridiagonal form. */ 00222 00223 /* See "Computing Small Singular Values of Bidiagonal Matrices */ 00224 /* with Guaranteed High Relative Accuracy," by Demmel and */ 00225 /* Kahan, LAPACK Working Note #3. */ 00226 00227 /* If high relative accuracy is important, set ABSTOL to */ 00228 /* SLAMCH( 'Safe minimum' ). Doing so will guarantee that */ 00229 /* eigenvalues are computed to high relative accuracy when */ 00230 /* possible in future releases. The current code does not */ 00231 /* make any guarantees about high relative accuracy, but */ 00232 /* future releases will. See J. Barlow and J. Demmel, */ 00233 /* "Computing Accurate Eigensystems of Scaled Diagonally */ 00234 /* Dominant Matrices", LAPACK Working Note #7, for a discussion */ 00235 /* of which matrices define their eigenvalues to high relative */ 00236 /* accuracy. */ 00237 00238 /* M (output) INTEGER */ 00239 /* The total number of eigenvalues found. 0 <= M <= N. */ 00240 /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ 00241 00242 /* W (output) REAL array, dimension (N) */ 00243 /* The first M elements contain the selected eigenvalues in */ 00244 /* ascending order. */ 00245 00246 /* Z (output) REAL array, dimension (LDZ, max(1,M)) */ 00247 /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ 00248 /* contain the orthonormal eigenvectors of the matrix A */ 00249 /* corresponding to the selected eigenvalues, with the i-th */ 00250 /* column of Z holding the eigenvector associated with W(i). */ 00251 /* If JOBZ = 'N', then Z is not referenced. */ 00252 /* Note: the user must ensure that at least max(1,M) columns are */ 00253 /* supplied in the array Z; if RANGE = 'V', the exact value of M */ 00254 /* is not known in advance and an upper bound must be used. */ 00255 /* Supplying N columns is always safe. */ 00256 00257 /* LDZ (input) INTEGER */ 00258 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00259 /* JOBZ = 'V', LDZ >= max(1,N). */ 00260 00261 /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ 00262 /* The support of the eigenvectors in Z, i.e., the indices */ 00263 /* indicating the nonzero elements in Z. The i-th eigenvector */ 00264 /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ 00265 /* ISUPPZ( 2*i ). */ 00266 /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ 00267 00268 /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ 00269 /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ 00270 00271 /* LWORK (input) INTEGER */ 00272 /* The dimension of the array WORK. LWORK >= max(1,26*N). */ 00273 /* For optimal efficiency, LWORK >= (NB+6)*N, */ 00274 /* where NB is the max of the blocksize for SSYTRD and SORMTR */ 00275 /* returned by ILAENV. */ 00276 00277 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00278 /* only calculates the optimal sizes of the WORK and IWORK */ 00279 /* arrays, returns these values as the first entries of the WORK */ 00280 /* and IWORK arrays, and no error message related to LWORK or */ 00281 /* LIWORK is issued by XERBLA. */ 00282 00283 /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ 00284 /* On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */ 00285 00286 /* LIWORK (input) INTEGER */ 00287 /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ 00288 00289 /* If LIWORK = -1, then a workspace query is assumed; the */ 00290 /* routine only calculates the optimal sizes of the WORK and */ 00291 /* IWORK arrays, returns these values as the first entries of */ 00292 /* the WORK and IWORK arrays, and no error message related to */ 00293 /* LWORK or LIWORK is issued by XERBLA. */ 00294 00295 /* INFO (output) INTEGER */ 00296 /* = 0: successful exit */ 00297 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00298 /* > 0: Internal error */ 00299 00300 /* Further Details */ 00301 /* =============== */ 00302 00303 /* Based on contributions by */ 00304 /* Inderjit Dhillon, IBM Almaden, USA */ 00305 /* Osni Marques, LBNL/NERSC, USA */ 00306 /* Ken Stanley, Computer Science Division, University of */ 00307 /* California at Berkeley, USA */ 00308 /* Jason Riedy, Computer Science Division, University of */ 00309 /* California at Berkeley, USA */ 00310 00311 /* ===================================================================== */ 00312 00313 /* .. Parameters .. */ 00314 /* .. */ 00315 /* .. Local Scalars .. */ 00316 /* .. */ 00317 /* .. External Functions .. */ 00318 /* .. */ 00319 /* .. External Subroutines .. */ 00320 /* .. */ 00321 /* .. Intrinsic Functions .. */ 00322 /* .. */ 00323 /* .. Executable Statements .. */ 00324 00325 /* Test the input parameters. */ 00326 00327 /* Parameter adjustments */ 00328 a_dim1 = *lda; 00329 a_offset = 1 + a_dim1; 00330 a -= a_offset; 00331 --w; 00332 z_dim1 = *ldz; 00333 z_offset = 1 + z_dim1; 00334 z__ -= z_offset; 00335 --isuppz; 00336 --work; 00337 --iwork; 00338 00339 /* Function Body */ 00340 ieeeok = ilaenv_(&c__10, "SSYEVR", "N", &c__1, &c__2, &c__3, &c__4); 00341 00342 lower = lsame_(uplo, "L"); 00343 wantz = lsame_(jobz, "V"); 00344 alleig = lsame_(range, "A"); 00345 valeig = lsame_(range, "V"); 00346 indeig = lsame_(range, "I"); 00347 00348 lquery = *lwork == -1 || *liwork == -1; 00349 00350 /* Computing MAX */ 00351 i__1 = 1, i__2 = *n * 26; 00352 lwmin = max(i__1,i__2); 00353 /* Computing MAX */ 00354 i__1 = 1, i__2 = *n * 10; 00355 liwmin = max(i__1,i__2); 00356 00357 *info = 0; 00358 if (! (wantz || lsame_(jobz, "N"))) { 00359 *info = -1; 00360 } else if (! (alleig || valeig || indeig)) { 00361 *info = -2; 00362 } else if (! (lower || lsame_(uplo, "U"))) { 00363 *info = -3; 00364 } else if (*n < 0) { 00365 *info = -4; 00366 } else if (*lda < max(1,*n)) { 00367 *info = -6; 00368 } else { 00369 if (valeig) { 00370 if (*n > 0 && *vu <= *vl) { 00371 *info = -8; 00372 } 00373 } else if (indeig) { 00374 if (*il < 1 || *il > max(1,*n)) { 00375 *info = -9; 00376 } else if (*iu < min(*n,*il) || *iu > *n) { 00377 *info = -10; 00378 } 00379 } 00380 } 00381 if (*info == 0) { 00382 if (*ldz < 1 || wantz && *ldz < *n) { 00383 *info = -15; 00384 } 00385 } 00386 00387 if (*info == 0) { 00388 nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); 00389 /* Computing MAX */ 00390 i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, & 00391 c_n1); 00392 nb = max(i__1,i__2); 00393 /* Computing MAX */ 00394 i__1 = (nb + 1) * *n; 00395 lwkopt = max(i__1,lwmin); 00396 work[1] = (real) lwkopt; 00397 iwork[1] = liwmin; 00398 00399 if (*lwork < lwmin && ! lquery) { 00400 *info = -18; 00401 } else if (*liwork < liwmin && ! lquery) { 00402 *info = -20; 00403 } 00404 } 00405 00406 if (*info != 0) { 00407 i__1 = -(*info); 00408 xerbla_("SSYEVR", &i__1); 00409 return 0; 00410 } else if (lquery) { 00411 return 0; 00412 } 00413 00414 /* Quick return if possible */ 00415 00416 *m = 0; 00417 if (*n == 0) { 00418 work[1] = 1.f; 00419 return 0; 00420 } 00421 00422 if (*n == 1) { 00423 work[1] = 26.f; 00424 if (alleig || indeig) { 00425 *m = 1; 00426 w[1] = a[a_dim1 + 1]; 00427 } else { 00428 if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) { 00429 *m = 1; 00430 w[1] = a[a_dim1 + 1]; 00431 } 00432 } 00433 if (wantz) { 00434 z__[z_dim1 + 1] = 1.f; 00435 } 00436 return 0; 00437 } 00438 00439 /* Get machine constants. */ 00440 00441 safmin = slamch_("Safe minimum"); 00442 eps = slamch_("Precision"); 00443 smlnum = safmin / eps; 00444 bignum = 1.f / smlnum; 00445 rmin = sqrt(smlnum); 00446 /* Computing MIN */ 00447 r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin)); 00448 rmax = dmin(r__1,r__2); 00449 00450 /* Scale matrix to allowable range, if necessary. */ 00451 00452 iscale = 0; 00453 abstll = *abstol; 00454 if (valeig) { 00455 vll = *vl; 00456 vuu = *vu; 00457 } 00458 anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]); 00459 if (anrm > 0.f && anrm < rmin) { 00460 iscale = 1; 00461 sigma = rmin / anrm; 00462 } else if (anrm > rmax) { 00463 iscale = 1; 00464 sigma = rmax / anrm; 00465 } 00466 if (iscale == 1) { 00467 if (lower) { 00468 i__1 = *n; 00469 for (j = 1; j <= i__1; ++j) { 00470 i__2 = *n - j + 1; 00471 sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1); 00472 /* L10: */ 00473 } 00474 } else { 00475 i__1 = *n; 00476 for (j = 1; j <= i__1; ++j) { 00477 sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1); 00478 /* L20: */ 00479 } 00480 } 00481 if (*abstol > 0.f) { 00482 abstll = *abstol * sigma; 00483 } 00484 if (valeig) { 00485 vll = *vl * sigma; 00486 vuu = *vu * sigma; 00487 } 00488 } 00489 /* Initialize indices into workspaces. Note: The IWORK indices are */ 00490 /* used only if SSTERF or SSTEMR fail. */ 00491 /* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */ 00492 /* elementary reflectors used in SSYTRD. */ 00493 indtau = 1; 00494 /* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */ 00495 indd = indtau + *n; 00496 /* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */ 00497 /* tridiagonal matrix from SSYTRD. */ 00498 inde = indd + *n; 00499 /* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */ 00500 /* -written by SSTEMR (the SSTERF path copies the diagonal to W). */ 00501 inddd = inde + *n; 00502 /* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */ 00503 /* -written while computing the eigenvalues in SSTERF and SSTEMR. */ 00504 indee = inddd + *n; 00505 /* INDWK is the starting offset of the left-over workspace, and */ 00506 /* LLWORK is the remaining workspace size. */ 00507 indwk = indee + *n; 00508 llwork = *lwork - indwk + 1; 00509 /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */ 00510 /* stores the block indices of each of the M<=N eigenvalues. */ 00511 indibl = 1; 00512 /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */ 00513 /* stores the starting and finishing indices of each block. */ 00514 indisp = indibl + *n; 00515 /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ 00516 /* that corresponding to eigenvectors that fail to converge in */ 00517 /* SSTEIN. This information is discarded; if any fail, the driver */ 00518 /* returns INFO > 0. */ 00519 indifl = indisp + *n; 00520 /* INDIWO is the offset of the remaining integer workspace. */ 00521 indiwo = indisp + *n; 00522 00523 /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ 00524 00525 ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[ 00526 indtau], &work[indwk], &llwork, &iinfo); 00527 00528 /* If all eigenvalues are desired */ 00529 /* then call SSTERF or SSTEMR and SORMTR. */ 00530 00531 test = FALSE_; 00532 if (indeig) { 00533 if (*il == 1 && *iu == *n) { 00534 test = TRUE_; 00535 } 00536 } 00537 if ((alleig || test) && ieeeok == 1) { 00538 if (! wantz) { 00539 scopy_(n, &work[indd], &c__1, &w[1], &c__1); 00540 i__1 = *n - 1; 00541 scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); 00542 ssterf_(n, &w[1], &work[indee], info); 00543 } else { 00544 i__1 = *n - 1; 00545 scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); 00546 scopy_(n, &work[indd], &c__1, &work[inddd], &c__1); 00547 00548 if (*abstol <= *n * 2.f * eps) { 00549 tryrac = TRUE_; 00550 } else { 00551 tryrac = FALSE_; 00552 } 00553 sstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, 00554 m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, & 00555 work[indwk], lwork, &iwork[1], liwork, info); 00556 00557 00558 00559 /* Apply orthogonal matrix used in reduction to tridiagonal */ 00560 /* form to eigenvectors returned by SSTEIN. */ 00561 00562 if (wantz && *info == 0) { 00563 indwkn = inde; 00564 llwrkn = *lwork - indwkn + 1; 00565 sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau] 00566 , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); 00567 } 00568 } 00569 00570 00571 if (*info == 0) { 00572 /* Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are */ 00573 /* undefined. */ 00574 *m = *n; 00575 goto L30; 00576 } 00577 *info = 0; 00578 } 00579 00580 /* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */ 00581 /* Also call SSTEBZ and SSTEIN if SSTEMR fails. */ 00582 00583 if (wantz) { 00584 *(unsigned char *)order = 'B'; 00585 } else { 00586 *(unsigned char *)order = 'E'; 00587 } 00588 sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ 00589 inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ 00590 indwk], &iwork[indiwo], info); 00591 00592 if (wantz) { 00593 sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ 00594 indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], & 00595 iwork[indifl], info); 00596 00597 /* Apply orthogonal matrix used in reduction to tridiagonal */ 00598 /* form to eigenvectors returned by SSTEIN. */ 00599 00600 indwkn = inde; 00601 llwrkn = *lwork - indwkn + 1; 00602 sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ 00603 z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); 00604 } 00605 00606 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00607 00608 /* Jump here if SSTEMR/SSTEIN succeeded. */ 00609 L30: 00610 if (iscale == 1) { 00611 if (*info == 0) { 00612 imax = *m; 00613 } else { 00614 imax = *info - 1; 00615 } 00616 r__1 = 1.f / sigma; 00617 sscal_(&imax, &r__1, &w[1], &c__1); 00618 } 00619 00620 /* If eigenvalues are not in order, then sort them, along with */ 00621 /* eigenvectors. Note: We do not sort the IFAIL portion of IWORK. */ 00622 /* It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do */ 00623 /* not return this detailed information to the user. */ 00624 00625 if (wantz) { 00626 i__1 = *m - 1; 00627 for (j = 1; j <= i__1; ++j) { 00628 i__ = 0; 00629 tmp1 = w[j]; 00630 i__2 = *m; 00631 for (jj = j + 1; jj <= i__2; ++jj) { 00632 if (w[jj] < tmp1) { 00633 i__ = jj; 00634 tmp1 = w[jj]; 00635 } 00636 /* L40: */ 00637 } 00638 00639 if (i__ != 0) { 00640 w[i__] = w[j]; 00641 w[j] = tmp1; 00642 sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 00643 &c__1); 00644 } 00645 /* L50: */ 00646 } 00647 } 00648 00649 /* Set WORK(1) to optimal workspace size. */ 00650 00651 work[1] = (real) lwkopt; 00652 iwork[1] = liwmin; 00653 00654 return 0; 00655 00656 /* End of SSYEVR */ 00657 00658 } /* ssyevr_ */