sstevr.c
Go to the documentation of this file.
00001 /* sstevr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__10 = 10;
00019 static integer c__1 = 1;
00020 static integer c__2 = 2;
00021 static integer c__3 = 3;
00022 static integer c__4 = 4;
00023 
00024 /* Subroutine */ int sstevr_(char *jobz, char *range, integer *n, real *d__, 
00025         real *e, real *vl, real *vu, integer *il, integer *iu, real *abstol, 
00026         integer *m, real *w, real *z__, integer *ldz, integer *isuppz, real *
00027         work, integer *lwork, integer *iwork, integer *liwork, integer *info)
00028 {
00029     /* System generated locals */
00030     integer z_dim1, z_offset, i__1, i__2;
00031     real r__1, r__2;
00032 
00033     /* Builtin functions */
00034     double sqrt(doublereal);
00035 
00036     /* Local variables */
00037     integer i__, j, jj;
00038     real eps, vll, vuu, tmp1;
00039     integer imax;
00040     real rmin, rmax;
00041     logical test;
00042     real tnrm, sigma;
00043     extern logical lsame_(char *, char *);
00044     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
00045     char order[1];
00046     integer lwmin;
00047     extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
00048             integer *), sswap_(integer *, real *, integer *, real *, integer *
00049 );
00050     logical wantz, alleig, indeig;
00051     integer iscale, ieeeok, indibl, indifl;
00052     logical valeig;
00053     extern doublereal slamch_(char *);
00054     real safmin;
00055     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00056             integer *, integer *);
00057     extern /* Subroutine */ int xerbla_(char *, integer *);
00058     real bignum;
00059     integer indisp, indiwo, liwmin;
00060     logical tryrac;
00061     extern doublereal slanst_(char *, integer *, real *, real *);
00062     extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *, 
00063             real *, integer *, integer *, real *, integer *, real *, integer *
00064 , integer *, integer *), ssterf_(integer *, real *, real *, 
00065             integer *);
00066     integer nsplit;
00067     extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
00068             real *, integer *, integer *, real *, real *, real *, integer *, 
00069             integer *, real *, integer *, integer *, real *, integer *, 
00070             integer *);
00071     real smlnum;
00072     extern /* Subroutine */ int sstemr_(char *, char *, integer *, real *, 
00073             real *, real *, real *, integer *, integer *, integer *, real *, 
00074             real *, integer *, integer *, integer *, logical *, real *, 
00075             integer *, integer *, integer *, integer *);
00076     logical lquery;
00077 
00078 
00079 /*  -- LAPACK driver routine (version 3.2) -- */
00080 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00081 /*     November 2006 */
00082 
00083 /*     .. Scalar Arguments .. */
00084 /*     .. */
00085 /*     .. Array Arguments .. */
00086 /*     .. */
00087 
00088 /*  Purpose */
00089 /*  ======= */
00090 
00091 /*  SSTEVR computes selected eigenvalues and, optionally, eigenvectors */
00092 /*  of a real symmetric tridiagonal matrix T.  Eigenvalues and */
00093 /*  eigenvectors can be selected by specifying either a range of values */
00094 /*  or a range of indices for the desired eigenvalues. */
00095 
00096 /*  Whenever possible, SSTEVR calls SSTEMR to compute the */
00097 /*  eigenspectrum using Relatively Robust Representations.  SSTEMR */
00098 /*  computes eigenvalues by the dqds algorithm, while orthogonal */
00099 /*  eigenvectors are computed from various "good" L D L^T representations */
00100 /*  (also known as Relatively Robust Representations). Gram-Schmidt */
00101 /*  orthogonalization is avoided as far as possible. More specifically, */
00102 /*  the various steps of the algorithm are as follows. For the i-th */
00103 /*  unreduced block of T, */
00104 /*     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */
00105 /*          is a relatively robust representation, */
00106 /*     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */
00107 /*         relative accuracy by the dqds algorithm, */
00108 /*     (c) If there is a cluster of close eigenvalues, "choose" sigma_i */
00109 /*         close to the cluster, and go to step (a), */
00110 /*     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */
00111 /*         compute the corresponding eigenvector by forming a */
00112 /*         rank-revealing twisted factorization. */
00113 /*  The desired accuracy of the output can be specified by the input */
00114 /*  parameter ABSTOL. */
00115 
00116 /*  For more details, see "A new O(n^2) algorithm for the symmetric */
00117 /*  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */
00118 /*  Computer Science Division Technical Report No. UCB//CSD-97-971, */
00119 /*  UC Berkeley, May 1997. */
00120 
00121 
00122 /*  Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested */
00123 /*  on machines which conform to the ieee-754 floating point standard. */
00124 /*  SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and */
00125 /*  when partial spectrum requests are made. */
00126 
00127 /*  Normal execution of SSTEMR may create NaNs and infinities and */
00128 /*  hence may abort due to a floating point exception in environments */
00129 /*  which do not handle NaNs and infinities in the ieee standard default */
00130 /*  manner. */
00131 
00132 /*  Arguments */
00133 /*  ========= */
00134 
00135 /*  JOBZ    (input) CHARACTER*1 */
00136 /*          = 'N':  Compute eigenvalues only; */
00137 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00138 
00139 /*  RANGE   (input) CHARACTER*1 */
00140 /*          = 'A': all eigenvalues will be found. */
00141 /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
00142 /*                 will be found. */
00143 /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
00144 /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
00145 /* ********* SSTEIN are called */
00146 
00147 /*  N       (input) INTEGER */
00148 /*          The order of the matrix.  N >= 0. */
00149 
00150 /*  D       (input/output) REAL array, dimension (N) */
00151 /*          On entry, the n diagonal elements of the tridiagonal matrix */
00152 /*          A. */
00153 /*          On exit, D may be multiplied by a constant factor chosen */
00154 /*          to avoid over/underflow in computing the eigenvalues. */
00155 
00156 /*  E       (input/output) REAL array, dimension (max(1,N-1)) */
00157 /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
00158 /*          matrix A in elements 1 to N-1 of E. */
00159 /*          On exit, E may be multiplied by a constant factor chosen */
00160 /*          to avoid over/underflow in computing the eigenvalues. */
00161 
00162 /*  VL      (input) REAL */
00163 /*  VU      (input) REAL */
00164 /*          If RANGE='V', the lower and upper bounds of the interval to */
00165 /*          be searched for eigenvalues. VL < VU. */
00166 /*          Not referenced if RANGE = 'A' or 'I'. */
00167 
00168 /*  IL      (input) INTEGER */
00169 /*  IU      (input) INTEGER */
00170 /*          If RANGE='I', the indices (in ascending order) of the */
00171 /*          smallest and largest eigenvalues to be returned. */
00172 /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
00173 /*          Not referenced if RANGE = 'A' or 'V'. */
00174 
00175 /*  ABSTOL  (input) REAL */
00176 /*          The absolute error tolerance for the eigenvalues. */
00177 /*          An approximate eigenvalue is accepted as converged */
00178 /*          when it is determined to lie in an interval [a,b] */
00179 /*          of width less than or equal to */
00180 
00181 /*                  ABSTOL + EPS *   max( |a|,|b| ) , */
00182 
00183 /*          where EPS is the machine precision.  If ABSTOL is less than */
00184 /*          or equal to zero, then  EPS*|T|  will be used in its place, */
00185 /*          where |T| is the 1-norm of the tridiagonal matrix obtained */
00186 /*          by reducing A to tridiagonal form. */
00187 
00188 /*          See "Computing Small Singular Values of Bidiagonal Matrices */
00189 /*          with Guaranteed High Relative Accuracy," by Demmel and */
00190 /*          Kahan, LAPACK Working Note #3. */
00191 
00192 /*          If high relative accuracy is important, set ABSTOL to */
00193 /*          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
00194 /*          eigenvalues are computed to high relative accuracy when */
00195 /*          possible in future releases.  The current code does not */
00196 /*          make any guarantees about high relative accuracy, but */
00197 /*          future releases will. See J. Barlow and J. Demmel, */
00198 /*          "Computing Accurate Eigensystems of Scaled Diagonally */
00199 /*          Dominant Matrices", LAPACK Working Note #7, for a discussion */
00200 /*          of which matrices define their eigenvalues to high relative */
00201 /*          accuracy. */
00202 
00203 /*  M       (output) INTEGER */
00204 /*          The total number of eigenvalues found.  0 <= M <= N. */
00205 /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
00206 
00207 /*  W       (output) REAL array, dimension (N) */
00208 /*          The first M elements contain the selected eigenvalues in */
00209 /*          ascending order. */
00210 
00211 /*  Z       (output) REAL array, dimension (LDZ, max(1,M) ) */
00212 /*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
00213 /*          contain the orthonormal eigenvectors of the matrix A */
00214 /*          corresponding to the selected eigenvalues, with the i-th */
00215 /*          column of Z holding the eigenvector associated with W(i). */
00216 /*          Note: the user must ensure that at least max(1,M) columns are */
00217 /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
00218 /*          is not known in advance and an upper bound must be used. */
00219 
00220 /*  LDZ     (input) INTEGER */
00221 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00222 /*          JOBZ = 'V', LDZ >= max(1,N). */
00223 
00224 /*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
00225 /*          The support of the eigenvectors in Z, i.e., the indices */
00226 /*          indicating the nonzero elements in Z. The i-th eigenvector */
00227 /*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
00228 /*          ISUPPZ( 2*i ). */
00229 /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
00230 
00231 /*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
00232 /*          On exit, if INFO = 0, WORK(1) returns the optimal (and */
00233 /*          minimal) LWORK. */
00234 
00235 /*  LWORK   (input) INTEGER */
00236 /*          The dimension of the array WORK.  LWORK >= 20*N. */
00237 
00238 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00239 /*          only calculates the optimal sizes of the WORK and IWORK */
00240 /*          arrays, returns these values as the first entries of the WORK */
00241 /*          and IWORK arrays, and no error message related to LWORK or */
00242 /*          LIWORK is issued by XERBLA. */
00243 
00244 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00245 /*          On exit, if INFO = 0, IWORK(1) returns the optimal (and */
00246 /*          minimal) LIWORK. */
00247 
00248 /*  LIWORK  (input) INTEGER */
00249 /*          The dimension of the array IWORK.  LIWORK >= 10*N. */
00250 
00251 /*          If LIWORK = -1, then a workspace query is assumed; the */
00252 /*          routine only calculates the optimal sizes of the WORK and */
00253 /*          IWORK arrays, returns these values as the first entries of */
00254 /*          the WORK and IWORK arrays, and no error message related to */
00255 /*          LWORK or LIWORK is issued by XERBLA. */
00256 
00257 /*  INFO    (output) INTEGER */
00258 /*          = 0:  successful exit */
00259 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00260 /*          > 0:  Internal error */
00261 
00262 /*  Further Details */
00263 /*  =============== */
00264 
00265 /*  Based on contributions by */
00266 /*     Inderjit Dhillon, IBM Almaden, USA */
00267 /*     Osni Marques, LBNL/NERSC, USA */
00268 /*     Ken Stanley, Computer Science Division, University of */
00269 /*       California at Berkeley, USA */
00270 /*     Jason Riedy, Computer Science Division, University of */
00271 /*       California at Berkeley, USA */
00272 
00273 /*  ===================================================================== */
00274 
00275 /*     .. Parameters .. */
00276 /*     .. */
00277 /*     .. Local Scalars .. */
00278 /*     .. */
00279 /*     .. External Functions .. */
00280 /*     .. */
00281 /*     .. External Subroutines .. */
00282 /*     .. */
00283 /*     .. Intrinsic Functions .. */
00284 /*     .. */
00285 /*     .. Executable Statements .. */
00286 
00287 
00288 /*     Test the input parameters. */
00289 
00290     /* Parameter adjustments */
00291     --d__;
00292     --e;
00293     --w;
00294     z_dim1 = *ldz;
00295     z_offset = 1 + z_dim1;
00296     z__ -= z_offset;
00297     --isuppz;
00298     --work;
00299     --iwork;
00300 
00301     /* Function Body */
00302     ieeeok = ilaenv_(&c__10, "SSTEVR", "N", &c__1, &c__2, &c__3, &c__4);
00303 
00304     wantz = lsame_(jobz, "V");
00305     alleig = lsame_(range, "A");
00306     valeig = lsame_(range, "V");
00307     indeig = lsame_(range, "I");
00308 
00309     lquery = *lwork == -1 || *liwork == -1;
00310 /* Computing MAX */
00311     i__1 = 1, i__2 = *n * 20;
00312     lwmin = max(i__1,i__2);
00313 /* Computing MAX */
00314     i__1 = 1, i__2 = *n * 10;
00315     liwmin = max(i__1,i__2);
00316 
00317 
00318     *info = 0;
00319     if (! (wantz || lsame_(jobz, "N"))) {
00320         *info = -1;
00321     } else if (! (alleig || valeig || indeig)) {
00322         *info = -2;
00323     } else if (*n < 0) {
00324         *info = -3;
00325     } else {
00326         if (valeig) {
00327             if (*n > 0 && *vu <= *vl) {
00328                 *info = -7;
00329             }
00330         } else if (indeig) {
00331             if (*il < 1 || *il > max(1,*n)) {
00332                 *info = -8;
00333             } else if (*iu < min(*n,*il) || *iu > *n) {
00334                 *info = -9;
00335             }
00336         }
00337     }
00338     if (*info == 0) {
00339         if (*ldz < 1 || wantz && *ldz < *n) {
00340             *info = -14;
00341         }
00342     }
00343 
00344     if (*info == 0) {
00345         work[1] = (real) lwmin;
00346         iwork[1] = liwmin;
00347 
00348         if (*lwork < lwmin && ! lquery) {
00349             *info = -17;
00350         } else if (*liwork < liwmin && ! lquery) {
00351             *info = -19;
00352         }
00353     }
00354 
00355     if (*info != 0) {
00356         i__1 = -(*info);
00357         xerbla_("SSTEVR", &i__1);
00358         return 0;
00359     } else if (lquery) {
00360         return 0;
00361     }
00362 
00363 /*     Quick return if possible */
00364 
00365     *m = 0;
00366     if (*n == 0) {
00367         return 0;
00368     }
00369 
00370     if (*n == 1) {
00371         if (alleig || indeig) {
00372             *m = 1;
00373             w[1] = d__[1];
00374         } else {
00375             if (*vl < d__[1] && *vu >= d__[1]) {
00376                 *m = 1;
00377                 w[1] = d__[1];
00378             }
00379         }
00380         if (wantz) {
00381             z__[z_dim1 + 1] = 1.f;
00382         }
00383         return 0;
00384     }
00385 
00386 /*     Get machine constants. */
00387 
00388     safmin = slamch_("Safe minimum");
00389     eps = slamch_("Precision");
00390     smlnum = safmin / eps;
00391     bignum = 1.f / smlnum;
00392     rmin = sqrt(smlnum);
00393 /* Computing MIN */
00394     r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
00395     rmax = dmin(r__1,r__2);
00396 
00397 
00398 /*     Scale matrix to allowable range, if necessary. */
00399 
00400     iscale = 0;
00401     vll = *vl;
00402     vuu = *vu;
00403 
00404     tnrm = slanst_("M", n, &d__[1], &e[1]);
00405     if (tnrm > 0.f && tnrm < rmin) {
00406         iscale = 1;
00407         sigma = rmin / tnrm;
00408     } else if (tnrm > rmax) {
00409         iscale = 1;
00410         sigma = rmax / tnrm;
00411     }
00412     if (iscale == 1) {
00413         sscal_(n, &sigma, &d__[1], &c__1);
00414         i__1 = *n - 1;
00415         sscal_(&i__1, &sigma, &e[1], &c__1);
00416         if (valeig) {
00417             vll = *vl * sigma;
00418             vuu = *vu * sigma;
00419         }
00420     }
00421 /*     Initialize indices into workspaces.  Note: These indices are used only */
00422 /*     if SSTERF or SSTEMR fail. */
00423 /*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
00424 /*     stores the block indices of each of the M<=N eigenvalues. */
00425     indibl = 1;
00426 /*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
00427 /*     stores the starting and finishing indices of each block. */
00428     indisp = indibl + *n;
00429 /*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
00430 /*     that corresponding to eigenvectors that fail to converge in */
00431 /*     SSTEIN.  This information is discarded; if any fail, the driver */
00432 /*     returns INFO > 0. */
00433     indifl = indisp + *n;
00434 /*     INDIWO is the offset of the remaining integer workspace. */
00435     indiwo = indisp + *n;
00436 
00437 /*     If all eigenvalues are desired, then */
00438 /*     call SSTERF or SSTEMR.  If this fails for some eigenvalue, then */
00439 /*     try SSTEBZ. */
00440 
00441 
00442     test = FALSE_;
00443     if (indeig) {
00444         if (*il == 1 && *iu == *n) {
00445             test = TRUE_;
00446         }
00447     }
00448     if ((alleig || test) && ieeeok == 1) {
00449         i__1 = *n - 1;
00450         scopy_(&i__1, &e[1], &c__1, &work[1], &c__1);
00451         if (! wantz) {
00452             scopy_(n, &d__[1], &c__1, &w[1], &c__1);
00453             ssterf_(n, &w[1], &work[1], info);
00454         } else {
00455             scopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1);
00456             if (*abstol <= *n * 2.f * eps) {
00457                 tryrac = TRUE_;
00458             } else {
00459                 tryrac = FALSE_;
00460             }
00461             i__1 = *lwork - (*n << 1);
00462             sstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m, 
00463                     &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[
00464                     (*n << 1) + 1], &i__1, &iwork[1], liwork, info);
00465 
00466         }
00467         if (*info == 0) {
00468             *m = *n;
00469             goto L10;
00470         }
00471         *info = 0;
00472     }
00473 
00474 /*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
00475 
00476     if (wantz) {
00477         *(unsigned char *)order = 'B';
00478     } else {
00479         *(unsigned char *)order = 'E';
00480     }
00481     sstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &
00482             nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[
00483             indiwo], info);
00484 
00485     if (wantz) {
00486         sstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &
00487                 z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl], 
00488                 info);
00489     }
00490 
00491 /*     If matrix was scaled, then rescale eigenvalues appropriately. */
00492 
00493 L10:
00494     if (iscale == 1) {
00495         if (*info == 0) {
00496             imax = *m;
00497         } else {
00498             imax = *info - 1;
00499         }
00500         r__1 = 1.f / sigma;
00501         sscal_(&imax, &r__1, &w[1], &c__1);
00502     }
00503 
00504 /*     If eigenvalues are not in order, then sort them, along with */
00505 /*     eigenvectors. */
00506 
00507     if (wantz) {
00508         i__1 = *m - 1;
00509         for (j = 1; j <= i__1; ++j) {
00510             i__ = 0;
00511             tmp1 = w[j];
00512             i__2 = *m;
00513             for (jj = j + 1; jj <= i__2; ++jj) {
00514                 if (w[jj] < tmp1) {
00515                     i__ = jj;
00516                     tmp1 = w[jj];
00517                 }
00518 /* L20: */
00519             }
00520 
00521             if (i__ != 0) {
00522                 w[i__] = w[j];
00523                 w[j] = tmp1;
00524                 sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
00525                          &c__1);
00526             }
00527 /* L30: */
00528         }
00529     }
00530 
00531 /*      Causes problems with tests 19 & 20: */
00532 /*      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */
00533 
00534 
00535     work[1] = (real) lwmin;
00536     iwork[1] = liwmin;
00537     return 0;
00538 
00539 /*     End of SSTEVR */
00540 
00541 } /* sstevr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:14